
1

Name:

CS343: Analysis of Algorithms, Sp 04
Exam 1

Score: 1. (max 10) 5. (max 10)
2. (max 17) 6. (max 10)
3. (max 10) 7. (max 10)
4. (max 10) 8. (max 13)

9. (max 10)
Total: (max 100)

This exam is closed book. Calculators are not allowed.

1. (10 pts) Use induction to prove
∑n

i=0 xi = 1−xn+1

1−x . Be sure to show and give justification
for all of your steps.



CS 343 Analysis of Algorithms, Spring 2004: Exam 1 2

2. (17 pts total) Assume that you have a list A of sorted integers. You want to determine
if a particular integer value is in the list. The fastest way to do this is to use recursive
binary search where you start by comparing your value with the item in the middle of
the list. If it matches, you are done. If your value is larger than this item, you recursively
search the top part of the list. If your value is smaller than this item, you recursively
search the bottom part of the list.

(a) (10 pts) Implement recursive binary search by completing the findVal method
below. Assume that the array A is in sorted order. The method should return true
if val found in the array A. Otherwise, it returns false.

public boolean find(int val, int [] A) {
return findval(val, A, 0, A.length-1);

}
public boolean findVal(int val, int[] A, int i, int k) {

}

(b) (2 pts) Write down a recurrence relation (i.e. T(n) = ...) for the above algorithm
where T(n) is the number of comparisons. Don’t worry about the details, but
instead try to capture the main behavior, much the way we did for MergeSort or
StoogeSort. You should be able to do this even if you didn’t complete part a) - just
reason about what the algorithm is doing.

(c) (5 pts) Use the Master Theorem to obtain the complexity of your algorithm. (You
should be able to test your answer on a small problem).



CS 343 Analysis of Algorithms, Spring 2004: Exam 1 3

3. (10 pts total) Suppose you have designed a new sorting algorithm and you want to
empirically measure its complexity. So, you run the algorithm to calculate the average
number of comparisons, c(n), as a function of the input size n. Plotting your results, you
find that the graph of n vs log2 c is a straight line with a slope of m = 2 and y-intercept
b = 3.

(a) (8 pts) What can you say about the complexity of your algorithm in terms of m = 2
and b = 3? Be as specific as possible and explain your answer. Try to simplify your
answer as best you can.

(b) (2 pts) Which is better, your algorithm or StoogeSort? Explain.

4. (10 pts) Use telescoping to solve T (n) = 3T (n− 1) + 1, where T (1) = 1;



CS 343 Analysis of Algorithms, Spring 2004: Exam 1 4

5. (10 pts total)Use the Master Theorem to solve the following recurrences. Be sure to
specify which case applies and show all of your work.

(a) (5 pts) T (n) = 8T (n
2 ) + n2

(b) (5 pts) T (n) = 2T (n
4 ) + n

6. (10 pts) State the definition of f(n) = o(g(n)).

7. (10 pts) Use the definition you gave in the previous problem to prove that 2n = o(22n).
Carefully explain all of your steps.



CS 343 Analysis of Algorithms, Spring 2004: Exam 1 5

8. (13 pts) Indicate for each pair of expressions (A and B) in the table below, whether A is
O, o, Ω, ω, or Θ of B. Assume that k ≥ 1, and c > 1. You should fill in a ”yes” or ”no”
in each slot of the table.

A B O o Ω ω Θ

log10 n lg n

lg6 n
√

n

nk cn

clg n nlg c

n! 22n

9. (1 pts each, 10 pts total) Circle true or false:

(a) true or false: f(n) = Ω(f(n)/2)

(b) true or false: f(n) = o(g(n)) ⇒ g(n) = Ω(f(n))

(c) true or false: f(n) = O(g(n)) ⇒ f(n) = o(g(n))

(d) true or false: f(n) = O(g(n)) ⇒ limn→∞
g(n)
f(n) = c

(e) true or false: limn→∞
f(n)
g(n) = 0 ⇒ f(n) = o(g(n))

(f) true or false: f(n) = o(f(n)2)

(g) true or false: f(n) = Θ(g(n)) ⇒ f(n) = Ω(g(n))

(h) true or false: f(n) = ω(g(n)) ⇒ f(n) = Ω(g(n))

(i) true or false: My algorithm runs in O(n) time and hers runs in o(n2).
Therefore, hers must be worse.

(j) true or false: My algorithm runs in O(n) time and hers runs in ω(n).
Therefore, hers must be worse.

10. (0 pts) What is the complexity of this exam?


