Name:

CS343: Analysis of Algorithms Midterm, Sp 08

Score:	1.		$\max 20)$	5.	$(\max 15)$
	2.		$\max 20)$	6.	$(\max 10)$
	3.		$\max 15)$	7.	(max 10 Xtra)
	4.		$\max 15)$		
		Total:		$(\max 105)$	percent:

This exam is closed book. Calculators are not allowed.

- 1. (20 pts total) Complexity
 - (a) (.5 pts each, 15 pts) Fill in the following table. That is, state (yes or no) whether A is O(B), o(B), $\Omega(B)$, $\omega(B)$, and/or $\Theta(B)$. Assume c and k are positive constants.

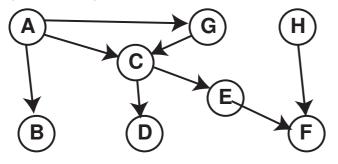
А	В	0	0	Ω	ω	Θ
$\log_{10} n^2$	$\log_2 n$					
$n\log^3 n$	$n^{5/4}$					
$n^{\log(n)}$	\sqrt{n}					
$(\log n)n^k$	c^n					
$c^{\lg n}$	$n^{\lg c}$					
<i>n</i> !	2^{n^2}					

(b) (5 pts) State the definition of Θ .

- 2. (20 pts total) Professor Turing drives an automobile from Salem to San Francisco along Interstate 5. His car's gas tank, when full, holds enough gas to travel *n* miles, and his map gives distances between gas stations on his route. The professor wishes to make as few gas stops as possible along the way.
 - (a) (5 pts) Give an efficient method by which Professor Turing can determine at which gas stations he should stop.

(b) (15 pts) Prove that your algorithm gives the optimal result.

- 3. (15 pts total) Huffman
 - (a) (10 pts) Generate a Huffman code for the characters with the (character, frequency):
 (' ', 6), ('a', 14), ('b', 2), ('d', 5), ('h', 1), ('i', 15), ('t', 7). Be sure to show your work!


(b) (5 pts) Write the encoding for the word "bad"

- 4. (15 pts total) For the following algorithms, *describe* (don't just give the name of) the problem the algorithm solves.
 - (a) (5 pts) Dijkstra's Algorithm

(b) (5 pts) Kruskal's Algorithm

(c) (5 pts) Union-Find.

5. (15 pts total) Graphs:

(a) (5 pts) Show the adjacency list for the above graph. In places where more than one ordering of nodes is allowed, *always choose an alphabetical ordering*.

(b) (10 pts) Topologically sort this graph. Show your work and briefly explain how the algorithm works. *Note, when faced with a choice, use an alphabetical ordering.*

6. (10 pts) Design an algorithm to find a vertex in a connected undirected graph whose removal *does not* disconnect the graph. Argue why it is correct. The algorithm should run in linear time. As a consequence, argue that every connected graph contains such a vertex.

7. (10 pts Extra Credit) Find two functions f(n) and g(n), both monotonically increasing such that $f(n) \neq O(g(n))$ and $g(n) \neq O(f(n))$. Prove your result.