
Ray Tracing Notes
CS445 Computer Graphics, Fall 2010

1 The Ray Trace Algorithm
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ray

light ray

computed

For each pixel in image {

compute ray

color = Trace(ray)

}

color Trace(ray) {

For each object

find intersection (if any)

check if intersection is closest

If no intersection exists

color = background color

else for the closest intersection

for each light // local color

if (! inShadow(shadowRay)) color += color_local

if reflective

color += k_r Trace(reflected ray)

if refractive

color += k_t Trace(transmitted ray)

}

boolean inShadow(shadowRay) {

for each object

if object intersects shadowRay return true

return false

}
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1.1 Complexity

w = width of image
h = height of image
n = number of objects
l = number of lights
d = levels of recursion for reflection/refraction

Assuming no recursion or shadows O(w ∗ h ∗ (n + l ∗ n)). How does this change if
shadows and recursion are added? What about anti-aliasing?

2 Computing the Ray

We define a ray by 1) a starting point P0 (at the camera) and 2) a direction defined
by the line connecting the camera position and the pixel on the screen, P1.
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dir = unit vector in direction from P0 to P1

=
P1 − P0

||P1 − P0|| .

The ray can then be expressed parametrically as

P = P0 + t dir

where t = 0 corresponds to P0. Of course, the goal is to find the closest object that
intersects this ray. This involves finding the t value of the all of the intersections and
then taking the smallest positive t.

2.1 Computing the Pixel Location in World Space (P1)

If we are given the row and column (i,j) of the pixel on the screen, what is its location
in world space? We first need to identify the location and orientation of the camera
and the location, size, and resolution of the screen (pixels).
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(i,j) pixel at (x,y)=(α,β)

(0,0)

Screen

j
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    (i,j)=(0,0) at 

(x,y)=(-W/2,H/2)

(i,j)=(Xres-1,Yres-1) at

    (x,y) = (W/2,-H/2)

Given the following:

P0 = location of camera = (0,0,0). Looks down n̂.

n̂ = unit vector normal to view plane, in picture = (0, 0, 1)

v̂ = unit vector in up direction, in picture = (0, 1, 0)

û = unit vector in right direction (left-handed system), in picture = (1, 0, 0)

d = distance of camera from view screen in World Coordinates (WC).

H = height of screen in WC.

W = width of screen in WC

Xres = number of pixels per column

Yres = number of pixels per row

We assume a left-handed coordinate system. Based on the above inputs, the location
of the i, jth pixel can be written as:

P1 = (x, y, z) = (x, y, d) =
(
−W

2
+

W · i
Xres − 1

,
H

2
− H · j

Yres − 1
, d

)

The direction of the ray is:

dir =
P1 − P0

||P1 − P0|| =
P1

||P1||
and the ray is

P = P0 + t dir = t dir

2.2 Computing View Coordinate Axes: General Case

What if x, y, and z are not aligned with u, v, and n? Instead, assume we are given
the following information:

P0 = location of camera
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VPN = normal to view plane

VUP = up direction

d = distance of camera from view screen

H = height of screen

W = width of screen

Xres = number of pixels per column

Yres = number of pixels per row

We can compute unit vectors along the view coordinate axes, where here we are using
a left-handed coordinate system.

n̂ =
VPN

||VPN||
û =

VUP× VPN

||VUP× VPN||
v̂ = n̂× û

Thus, in world coordinates, the difference P1 − P0 can be written as

P1 − P0 = αû + βv̂ + dn̂

for some α and β. To determine α and β we assume that pixels are spread evenly over
the screen and then convert from pixel (i, j) to a location on the screen as follows

(α, β) =
(
−W

2
+

W · i
Xres − 1

,
H

2
− H · j

Yres − 1

)

2.2.1 Example

Suppose P0 =



−2
−2
0


, VPN =




1
1
0


, VUP =




0
0
1


, d = 1, W = 2, H = 2, Xres =

201, and Yres = 201. Then

n̂ =
1√
2




1
1
0




û =
1√
2



−1
1
0




v̂ =




0
0
1




α = −1 +
i

100
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β = 1− j

100
dir = P1 − P0

P1 − P0 = αû + βv̂ + dn̂

P1 − P0 = (−1 +
i

100
)

1√
2



−1
1
0


 + (1− j

100
)




0
0
1


 + d

1√
2




1
1
0




=




2− i√
2 100

1√
2
( i

100
)

1− j
100




For pixel (i, j) = (10, 20),

dir = P1 − P0 =




1√
2(2− 1

10
)

1
10
√

2
4
5




where we can then compute the ray as a function of the parameter t as follows

P = P0 + t dir =



−2
−2
0


 + t




1√
2(2− 1

10
)

1
10
√

2
4
5




3 Computing Intersections

3.1 Spheres

A sphere can be represented by it center Pc = (a, b, c) and radius r. Given these, the
equation for the sphere can be written as

(x− a)2 + (y − b)2 + (z − c)2 = r2.

In vector notation, this becomes

(P − Pc) · (P − Pc) = r2.

To find the ray-sphere intersection we just insert the equation of ray in for P to give

(P0 + t dir− Pc) · (P0 + t dir− Pc) = r2

and solve for t. Multiplying out we obtain

(P0 − Pc) · (P0 − Pc) + 2 dir · (P0 − Pc)t + dir · dir t2 = r2
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which is a quadratic equation in t. Defining the scalars B and C as

B = 2 dir · (P0 − Pc)

C = (P0 − Pc) · (P0 − Pc)− r2

and noting that dir · dir = 1, we obtain the equation t2 + Bt + C = 0. The solution
is simply

t =
−B ±√B2 − 4c

2
.

There are 0, 1, or 2 real solutions to this depending on the value of the discriminant
D =

√
B2 − 4C. In particular,

D < 0 no intersections.
D = 0 1 intersection, ray grazes sphere.
D > 0 2 intersections, take smaller t value.

And if t < 0 then the object is behind viewer.

3.1.1 Example

Let the sphere be defined by: Pc =




3
3
1


, r = 2

and the ray by P0 =




0
−2
0


, P1 =




1
0
1


. (Use a left handed coordinate system.)

Then we find that

P0 − Pc =



−3
−5
−1




dir =
1√
6




1
2
1


, B =

−28√
6

= −11.43, C = 31

to give

0 = t2 − 28√
6
t + 31

D = B2 − 4C = 6.67

t =
−B ±√D

2
= 7.01(+) and 4.42(−)

So the intersection point is

P = P0 + t dir =




1.80
1.61
1.80



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3.2 Planes

A plane is defined by its normal N and a point on the plane Q0. Recall that the
equation of the plane is then given by

(P −Q0) ·N = 0

To find the intersection of the plane and the ray we insert the expression for the ray
into the above equation to obtain

(P0 + t dir−Q0) ·N = 0

and solving for t gives

t =
(Q0 − P0) ·N

dir ·N
Note, a zero denominator means that the line and plane are parallel. In such a case
there are either no intersections if the ray does not lie in the plane, or there are an
infinite number of intersections.

Boxes aligned with the axes are also easy because they are just planes with the range
constained.

4 Computing Pixel Color: Phong Lighting Model

At this point, we assume we have:

1. computed the equation of the ray (P0 and dir) from camera to given pixel

2. identified the closest object that intersects the ray

3. computed the location of the intersection point (P ) of the ray with the object

4. computed the surface normal at the intersection point

5. identified the location of all lights in the scene Li.

The color of the given pixel at the computed intersection point is composed of 1)
local color based on the interaction of surface with the ambient light and light coming
directly from the light sources, 2) the color resulting from reflected light, and 3) color
from refracted light. Here, we will discuss the local color as modeled by the Phong
Lighting Model. Note that the reflected and refracted light can be computed by
recursively applying Phong Model. The final pixel color is simply the sum of the
local, reflected, and refracted contributions.

pixel color = local color + α1*reflected + α2*refracted
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where α1 and α2 are material dependent weights (less than 1) that control how much
light is reflected or refracted.

The Phong Model computes the local color by dividing the light-surface interaction
into three components: ambient, diffuse, and specular. The local color is the sum of
each contribution:

local color = ambient + diffuse + specular

4.1 Ambient Color Contribution

Ambient light is the “background” light that results from many many rays from all
possible light sources bouncing off of objects multiple times. It is ambient light that
allows us to see all surfaces in a room even if there is no direct light on the surfaces.
Since it would be too complex to model every single ray, we instead model the average
behavior. The modeling is very simplistic in that we assume that ambient light is
constant over the entire scene. Although ambient light is a result of light sources in
the room we model it as independent of any light source and only dependent on the
scene.

Because ambient light is constant, it illuminates all surfaces with an equal brightness
making objects monochrome.

Contribution of ambient light to the pixel color is:

Ca = ka(crIa,r, cgIa,g, cbIa,b)

where

• ka = ambient reflection coefficient, 0 ≤ ka ≤ 1
ka is a characteristic of the object, depending on the material make-up of the
object.

• c = (cr, cg, cb) = color of the object which is also a characteristic of the object,
depending on the material make-up of the object. The range for each component
is either 0 ≤ cr,g,b ≤ 1. Sometimes ka and c are combined. However, it is
useful to keep them separate so that one can adjust the ambient coefficent
while maintaining the same balance of color.

• Ia = (Ia,r, Ia,g, Ia,b) = the intensity of the ambient light. Ia is the same for all
objects in the scene.

• Note, the final pixel color should never exceed 1.

4.2 Diffuse and Specular

Diffuse and specular components are a result of light coming directly from a light
source to the intersection point and then being reflected from an object back to the
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observer’s eyes. Surfaces (i.e. materials) that are rough tend to scatter the light in
all directions. Such materials tend to have a rather dull finish and the illumination
is referred to as diffuse. While materials that are smooth and highly reflective (i.e.
shiny) tend to reflect light very non-uniformly. Such objects tend to have what are
called specular highlights. While the separation between these two is rather artificial,
it is still useful to model the diffuse and specular components as being separate.

For diffuse and specular we consider light that hits the intersection point directly
from the light. We want to compute how much light from the light source that hits
the intersection actually makes it back to the eye.

The ray that goes from the light to the object is called the shadow ray. Note that if
the shadow ray hits an opaque object before reaching the intersection point then that
light does not contribute to the light source at the intersection point. need picture.

4.2.1 Diffuse Light Component

Objects that have a dull, matte finish are said to have a large diffuse component.
The surface at the macroscopic level may appear smooth but at the microscopic
level, there are many tiny bumps that scatter light in all directions.

The surface normal at any given point, is generally not aligned with the normal of
the macroscopic object. As a result, light is scattered in many directions. We make
the simplifying assumption that the light is scattered equally in all directions so that
the brightness is independent of viewing angle.

The brightness,however, does depend on the angle that the light ray makes with the
surface normal.

The reason for this is as follows. Imagine a cylinder of light coming from the light
source and falling on the object (here we are ignoring light attenuation). The cross
sectional area of this cylinder is A. The energy per unit area hitting the surface
when the light is right overhead is E/A where E is the energy emitted from the light
source. If the light is at an angle then the surface area hit by the light is larger and
is given by Aθ = A/ cos θ so the energy per unit area is E cos θ/A, i.e. it is smaller
by an amount cos θ. Thus the brightness is a function of L ·N = cos θ where L is the
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unit vector pointing from the intersection point to the light source and N is the unit
normal to the surface.

Cross 

Sectional

Area A

A

θ

Light BeamLight Beam
Light Beam

at angle

Area on surface 

hit by light beam = A
       Area on surface 

hit by light beam = A / cos θ

Light energy per unit area = E / A Light per unit area = E cos θ / A

Why does the brightness not depend on the viewing angle? Once the light is fixed, we
have a fixed energy per unit area hitting the surface. As the viewing angle increases
the area viewed increases. However, the amount of this energy that gets reflected
decreases so as to offset the increase in viewing area. Thus the view sees the same
brightness from any angle.

For a monochrome light source, the diffuse component is given by

Cd = kd

∑

j

Ij(Lj ·N)

where

• kd = coefficient of diffuse reflection of the object being intersected

• N = unit normal at intersection point

• Lj = unit vector pointing from the intersection point to the jth light source.

• Ij = the intensity of the jth light source.

• Note: if Lj · N < 0 and the intersected object is opaque then the diffuse
component for that light is zero because the light is behind the object.

If we add color, then the intensity becomes Ij = (Ij,r, Ij,g, Ij,b) and we introduce the
diffuse color of the object c = (cr, cg, cb) which may or may not be different from the
ambient color. The diffuse component then becomes

Cd = kd

∑

j

(crIj,r, cgIj,g, cbIj,b)(Lj ·N)

4.2.2 Specular Light Component

Objects that are shiny have what we call specular highlights. Unlike diffuse surfaces,
shiny surfaces are very smooth even at the microscopic level. When light hits the
surface, most of the light is reflected only in one direction, the angle of reflection.
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For a monochrome light source, the specular component is given by

Cs = ks

∑

j

Ij(V ·Rj)
n

where

• ks = coefficient of specular reflection of the object being intersected

• Rj = unit direction of the reflected ray of the jth light source.

• V = unit direction of the viewer

• Ij = the intensity of the jth light source.

• n = specularity ( measure of the sharpness of the highlight). Can be in the
range from 1 to several hundred.

• Note: the color of the specular highlight is generally set to the color of the light
source and not the object.

Texture Types

• The texture data can be a 2D image or a 3D solid texture.

• The coordinates of the texture are called the texture parameters and the as-
signment of the texture parameters to the surface is called parameterization.
Texture parameters are commonly denoted u, v for 2D and u, v, w for 3D.

• Texture images, texture(u,v) are good when the surface has a natural param-
eterization and/or you want a “decal” or “projected” look. This is the most
common type of texture mapping.

• Solid textures, texture(u,v,w), are good when you want a surface to appear
carved out of a material (e.g. wood, marble).

• Textures can be stored as a raster image, a 3D discrete grid, or can be computed
on the fly procedurally. In procedural mapping (surface or solid): the “image”
is defined mathematically.
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Texture Parameterizationi: 2D Image Textures

2D texture is mapped to a 2D surface embedded in 3D space. See figure below. In
this process we assume that the image is stored in some nxn array. Each point in the
array is called a texel. WLOG, we can scale this so that the image fits in a range
0 ≤ u, v ≤ 1.

st coordinates

(flat 2D space)

The Map

            uv coordinates

(2D embedded in 3D space)

The 3D Surface

u

v
s

t

plane

u

v

cylinder
u

v

sphere

x

y
z

xyz coordinates

     (3D space)

Each pixel on the screen represents some portion of the (x,y,z) surface. This surface
then gets mapped to 2D uv space, which is then mapped to the image (st space) to
determine the color. Aliasing can be a problem depending on how the size of a pixel
in screen space compares to the area the pixel is covering in image (st) space.

Finding a reasonable mapping between uv and xyz can be a particular problem if the
surface is not flat. Also, edges may need to be matched up.
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Parameterization is somewhat straight forward for spheres, planes, cylinders,and rect-
angular surfaces (see sphere below).

Parameterization is somewhat less obvious for arbitrary polygons or volumes. In
the case of volumes, one can do a 2-step process of first mapping to an easy to
parameterize intermediate shape such as a sphere or cylinder. The second step is to
map from the intermediate shape to the surface of the actual object.

Spheres

y

z

x

C

P

Pole

N

r

v

u

Assume center is at C and radius = r.

We use a left handed coordinate system. v is zero at north pole and 1 at south pole.
The angle that is made is called θ which ranges between 0 and π.

u moves around in the xz plane around y (use left-hand rule to get direction). The
angle is φ which ranges between 0 and 2π.

Let P be the intersection point. Then the normal at P is

N =
P − C

||P − C|| =
P − C

r

1. Compute v:

v =
θ

π
But cosθ = N · Pole so that

v =
cos−1(N · Pole)

π

Letting Pole = (0, 1, 0) then

v =
cos−1((py − Cy)/r)

π

2. Compute u: Note, if v = 0 or 1 then u can be anything.

u =
φ

2π
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But tan φ = x/z = px−Cx

pz−Cz
so that

u = 0.5 +
1

2π
tan−1 px − Cx

pz − Cz

Note, we add .5 because tan−1 returns a value between −π and π rather than 0 and
2π .

3D Parameterization: 3D Solid textures

(u,v,w) are usually taken to be the world space or object space. Often these are
defined procedurally (wood, marble)

Bump Mapping

Bump mapping: make small perturbations to the surface normal so that smooth
objects appear to look bumpy, rough, wrinkled, or rippled.
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