Physically Based Modeling

Objects obey physical laws, e.g. gravity, collisions, spring forces, etc.

Particle System

Each particle:

e position moves over time based on the forces acting on it, i.e. it obeys f = ma.

e has 6 degrees of freedom: 3 position, 3 velocity

Equations of Motion:
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These 6 degrees of freedom are combined into a single vector u referred to as the
phase space:
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describes the path of the particle over time. Note,

0 = acceleration = a = f/m
An equation of the form
U = h(u,t)

where h is some function, is referred to as a 1st order differential equation. If it can’t
be solved exactly, then we solve it numerically.



Taylor’s Expansion

Taylor’s expansion says that
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It is exact but requires summing an infinite number of terms. For small At we can
approximate using Fuler’s Method

u(ty + At) = ulty) + At hug, to) + O((At)?)
Dropping the last term gives
u(to + At) = u(ty) + At h(uo, to)

This is iterated to obtain its value u at tg, to + At, to + 2At, ... Often this is written
as
Up = Up—1 + At h(un—la tn—l)
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Euler’s method is the simplest method for approximating differential equations. A
much better approximation is called the Midpoint or Runge Kutta Method given by

Unp1 = Uy + ko + O((AL)?)
]{?1 = At h(un, tn)

Examples

1. Constant Motion

Assume that there are no forces, f = 0, so that a = 0 and v = v, = constant.
Then
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Since p = v, is constant, we have that p =p= ... = 0. Putting this into Taylor’s
Expansion gives

u(to + At) = u(to) + At h(ug, to) = u(to) + At( %C )

or

p(to + At) = p(to) + At v, (1)

which is what one expects for constant velocity. This is exact - no approximation
is required.

[terating, we have
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Although iterating is hardly necessary since equation (1) is so simple.

. Gravity

Assume the force is a constant in negative y-direction

so that
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Applying Euler’'s Method, gives

Up = Up—1 + At h(“n—lu tn—l)
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3. Springs
q
p
Hooke’s Law gives
d
f=—k(|d] = s)
|d|
where
ks = spring constant
d = p—q= direction of force
= spring resting length
So we have F " p
o= ol =)
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Applying Euler’s Method, gives

Up = Up—1 + At h(un—lu tn—l)
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