eneric Objects 373

‘Equation (2.2), square both sides, and add them to get
' R+ -7 =0. (19.17)

with iy € (—oo, 00). The finite cylinder in Figure 19.11 is for y € [y y1l-

>ractice if ubstituting the ray equation into Equation (19.17) gives the quadratic
using this = 2 ‘
; P+bt+c=0,
chnique iy a bt+c=0
. objects.
a=d’+d?
b= 2(':’x'r'ix + Ozdz)! ’
values: c=0,0,+0,0,— .
e outward-facing unit normal at a hit point p is

=(0,1,0). . n=(pr, 0, pf7).
but that's ause the code for the cylinder hit function is similar to that of the sphere hit
nsformed function in Listing 3.6, I'll leave its implementation as an exercise. However,
n-generic : s‘%g Listing 19.9.
ure map- ;1‘!9.,5.4 Generic Torus
hapter 29

A torus is a doughnut-shaped object, as illustrated in Fig-

tire 19.12.

¢ We can construct a torus as follows. Consider a circle of

radius b in the (y, z) plane with center at z=4, as shown in Figure
& defined 19.13(a). This figure also shows an arbitrary point on the circle
or conve- at distance z from the y-axis. The equation of the circle is Figure 19.12. A torus.
11. Here, '
inder can (z—ay+y" -b=0. (19.18)
int We generate the torus by rotating this circle through 360° around the y-
Ht;;rsect axis. Figure 19.13(b) is a top-down view of the circle at some stage during the
g _ S .we rotation. If we can write down the equation for the rotated circle in terms of x,
;so;ism- y, and z, we have the implicit equation of the torus. The key observation is as

follows. The red point on the circle in Figure 19.13(a) at distance z along the
z-axis maintains the same distance from the y axis as the circle rotates, where it
becomes (¥* +z%)"2 The equation of the torus is therefore obtained by replacing
z in Equation (19.18) with (x* + 2%}

374 . 18. Ray-Object intersectiong

x
y - A
A
<z —

s [
— 2 ‘.‘ -
\"“'-,L Y '\

t) -
' '

f— a—

«—z—>» q

(a) (b)

Figure 19.13. Circle used to construct a torus: (2) initial location in the (y, z) plane; ®)
rotated location for generating the torus. ‘

[+ 22— g+ 22—, (19.19)
Squaring Equaﬁon (19.19) to get rid of the square root gives
f6 9 2) = (€ + 5+ 2P 22+ B2 + 2+) +42'y + (@ - Y= 0. (19.20)

This is the implicit equation of a generic torus whose central axis is the y-axis
and that is bisected by the (%, z) plane. Note that this is a Jourth-degree polyno-
mial in %, y, and z, which is also knownasa quartic equation. The two param-
eters 2 and b define the shape of the torus; 4 is called the swept radius, and b
is called the tube radius.* These control the size and shape of the torus. Figure
19.14 shows cross sections of tori with different relative values of 4 and b.

By substituting the tay equation into Equation (19.20), we can derive
the equation to solve for the Tay parameter . Unfortunately, there's a fair bit

a>>ph a=ph a<hp

Figure 19.14. Tori with different values of 2 and b, Note that there is no hole in the i:o'rus
whena<h,

4. The parameter # s also called the outer radius, and b is called the inner radius,

Intersections

>

z) plane; (b}

(19.19)

=0. (19.20)

3 the y-axis
vee polyno-
WO param-
dius, and b
rus. Figure
and b,

can derive
‘s a fair bit

]

in the torus

19.5 Generic Objects : 375
6f algebra involved, but the result is the following fourth-degree polynomial
“int: ‘

et + o o gt + ey =0, (19.21)

. where the coefficients are

c=(@B+BE+EY,

o3 =4 (2 +d} +d2) (oxdx + oydy + 0,4),

Ta= 2@% +dy + 2 Y o + 0 +02 — (2 + 5%)|+ 4 (0utx + 0ydly +0adh,) + 4222, (19.22)
.. " €= 4[03 +05 +0% — (a2 +b*):| (dex + Oydy + 024,)+ 8a*oydy,

| .é{, =4[o§ +05 +0% — (2 +bz):|2 —42* (v* - 02).

Smce Equation (19.21} is a quartic in ¢, it can be written in the form

(t‘ t) (t - tz) (t - ta) (t" f4) =0,

‘where t,—t, are the four roots. The fact that there can be from one to four
 real roots reflects the fact that a ray can hit a torus up to four times. Figure
19.15 fllustrates this for four rays in the (x, z) plane. Rays with one or three
hits are analogous to rays hitting a sphere once—they involve a tangential
intersection with the torus to machine precision. This will rarely happen in
Ppractice.

Because we have to solve a quartic to ray trace a torus, these are more
- difficult to intersect than spheres and planes, but fortunately, help is at hand.
Not only can quartics be solved in closed form, but there’s public-domain

1 intersection
3 intersections

4 intersections

2 intersections

Figure 19.15. Some of the ways that a ray can hit a torus.

- 376 19. Ray-Object Intersectiong

bool
Torus::hit(const Ray& ray, double& tmin, shadeRec& sr) const {
if (lbbox.hit(ray))
‘return (false):

double x1 = ray.o.x; double ¥l = ray.o.y; double z1 = ray.o.z;

double d1 = ray.d.x; double d2 = ray.d.y; double d3 = ray.d.z:
double coeffs[5]; // coefficient array
double roots[4]; // solution array

// define the coefficients

doubTe sum d_sqrd = dl * dl + d2 * d? + 43 # d3;

double & = x1 * x1 + y1 * YI+zl*zl-~a*a-~-b*bh;
double f = x1.* dil + y1 * d2 + z1 = d3;

doubTe four_a sqrd = 4.0 * g * a;

coeffs[0] = e * e - four_a_sqrd * (b*b-yl*yl); [/ constant term
coeffsll] =4.0 * f* e 4+ 2.0 * four_a_sqrd * yl * d2:

coeffs[2] = 2.0 * sun_d_sqrd * e + 4.0 * £ * F 4 four_a_sqrd * d2 * d2;
coeffs[3] = 4.0 * sum_d_sqrd * f:

coeffs{4] = sum d_sqrd * sum_d_sqrd; // coefficient of tA4

// Find the roots
int num_real_roots = solvequartic(coeffs, roots);

bool intersected = false;
double t = kHugevalue;

if (num_real_roots = 0) // ray misses the torus
return (faise);

// Tind the smallest root greater than kepsiTon, if any

for (int j =0; j < num_real_roots; j++)
if (roots[j] > kepsilon) {
intersected = true;
if (roots[j] < ©)
t = roots[j]; ‘

Listing 19.9. The function Torus: :hit.

ntersections

tant term -

Cd2 * d2;

nt of tAd

19.5 Generic Objects . 377

if (lintersected)
‘return (false);

tmin = t;
sr.local_hit_point = ray.o + t * ray.d;
sr.normal = computeNormal(sr.local_hit_point);

return (true);

Listing 19.9 (continued). The function Torus::hit.

C code available for solving them. Schwarze (1990) discusses the solutions
of cubic and quartic equations. His code is on the book’s website. Herbison-
Evans (1995) also discusses the solution of quartic equations.

Listing 19.9 shows the function Torus::hit, the first half of which
computes the coefficients (19.22) and stores them in a C arrdy. Note that the
first coefficient in the array is the constant term ¢y, and the last is the coef-
ficient c, of t*. All of the calculations are performed in Schwarze's function
solvequartic, which returns the number of real roots and the roots them-
- selves in the roots array. Because the roots in this array are not ordered by
increasing t, the following code has to search the array to find the smallest
t value. '

- The normal to the torus is given by the gradient of the function f(x, y, z}
- in Equation (19.20), evaluated at the hit point:)

Eﬁﬁ)

n=Vfxy.2)= (8x'ay'az

- See, for example, Thomas and Finney (1996). Performing the partial differen-
~ tations gives .
n,=dx [P+ +28— (@ + 1),
n, =4y [x*+y +2* = (@ + b*) + 24°),
n,=4z [x* +y7 + 2" — (@ + D).
- As nis not a unit normal, it must be normalized. Figure 19.16 shows three ray-

~ traced tori with the same viewing parameters and a4 = 2.0 but with different
values of b. '

