
Coordinate Systems 
 
There are 3 coordinate systems that a computer graphics programmer is most concerned with:  the 
Object Coordinate System (OCS), the World Coordinate System (WCS), and the Camera Coordinate 
System (CCS). Each plays an important role. 
 

 
 
OCS:  Objects are most easily modeled in a coordinate system with the origin at its center and the 
coordinate axes aligned in some natural way with the object.  For example, the sides of a cube would be 
aligned with the coordinate axes. Each object will have its own OCS.  
 
WCS:  In order for objects to interact, we need to place all objects within a single coordinate system, 
called the WCS, so their relationship with can be expressed.  We think of the WCS as representing the 
environment in which everything exists. Commonly, the WCS origin establishes the level of the ground 
and the y axis pointing up.  The WCS is typically considered fixed in position over time (objects and 
camera move within the WCS). The model matrix, M, converts an object’s vertices expressed in OCS to 
the WCS.  Each object will have its own M. We use the concept of scene graphs to generate the model 
matrix M in order to place and move complex objects within the WCS. 
 
CCS:  The camera represents the location & orientation of the viewer. Over time, the viewer generally 
moves around the WCS and so the relationship between the CCS and WCS is not constant.  The process 
of rendering an image requires that a 3D scene (i.e. the vertices) be projected down onto a 2D screen 
(the image), where the location and orientation of the screen is defined by the camera.   The projection 
is simple to do if the vertices are expressed in the camera coordinates, i.e. with the camera at the origin 
and looking down the negative z axis (as is the case for the CCS), then the projection will be onto to the 
xy plane so that the projection is simply  (x,y,z) → (x, y) .  Thus, we transform vertices from the WCS to 
the CCS in order to simplify the projection calculation. 
 
Things to think about: 
 
When specifying the coordinates of a position, it is important to make it clear which coordinates system 
is being used.  Consider the point (0,0,0)T .  This will mean something different depending on which 
coordinate system one is in.   For example, in the OCS, the (0,0,0)T generally corresponds to the center 
of the object.  In the WCS,  (0,0,0)T corresponds to the origin of the world, and in CCS, (0,0,0)T 
corresponds to the location of the camera.   Similarly, the vector (1,0,0)T corresponds to the x axis.  The x 
axis in the WCS is not in the same direction as the x axis in the CCS.   
 
In general, a point P can be expressed in any of the coordinate systems.  This will be discussed more 
later. 
 



Transforming OCS →WCS 
 
Consider a cube which might be modeled in the OCS  as in Figure 1. 

                                                        
                         Figure 1:  A cube in OCS.                              Figure 2:  A cube as it appears in OCS and WCS 
 
Let P be a point on a cube such as the vertex at coordinates (.5,.5,.5)T in OCS.  Now suppose we want to 
place it into “the world” as shown in Figure 2.  To do this, we need to transform the coordinates using a 
matrix we call the Model Matrix, M. 
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Where M is determined using the scene graph techniques.  
 
WCS →CCS 
 
Given the cube in WCS, we can now transform it into the CCS as shown in Figure 3. All three coordinate 
systems are shown in Figure 4. 
 

                          
Figure 3: A cube as it appears in                    Figure 4:  A cube in relation to 

WCS and CCS                                                       OCS, WCS, and CCS 
 
Notice that in the CCS the camera always looks down the camera’s negative z axis and the y vector 
points perpendicularly up from the camera.  To determine the coordinates in the CCS, we need to 
transform it from WCS to CCS using a matrix transform which we call the View Matrix, V. 
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Note:  For example, the point P=(.5,.5,.5)T on the cube as expressed in CCS is    

                                       PCCS = V PWCS = V M POCS = V M 
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Relationship between Transforming Points and Transforming Coordinate Systems 
 
Before discussing how to calculate V, we need to discuss transformations of coordinate systems.    
 
Note that it is not possible to distinguish between translating a point P in a coordinate system versus 
keeping the point fixed but moving the coordinate axes as shown in Figure 5 below.  We present the 
concepts here in 2D, however, the results extend to 3D.  
 
 
 

 
 

Figure 5: Moving the coordinate system (left) vs moving the point (right) 
 
The relationship between P and Q’ (on left) is the same as the relationship between P’ and Q (on right): 

• On the left, the point P has coordinates (1,3) in Q.  We translate the coordinate axes in Q by 
(4,3) to obtain Q’ .   Expressed in Q’, P now has coordinates (-3,0). 

• On the right, we keep Q fixed but translate P=(1,3)  by (-4,-3) to that it is now sitting at P’=(-3,0).   
• Either way, P ends up at (-3,0) and the transformation that must be applied to the point (on 

right) is the inverse of that applied to the coordinate system (on left). 
 
In summary, translating a point by a translation T, is equivalent to translating the coordinate system by  
T-1 = inverse of T.  

 
Figure 5: Rotating the coordinate system (left) vs rotating the point (right) 

 



Similarly, it can be shown that rotating a point by the rotation R, is equivalent to rotating the coordinate 
system by R-1 = inverse of R. 
 
In general, a transformation A applied to the coordinate axes is equivalent to applying the 
transformation A-1 to the vertices.   
 
For example, suppose we apply both a rotation and translation to the coordinate axes:  A=TR.   This is 
equivalent to transforming the vertices by A-1 = (TR)-1 = R-1 T-1. 
 
We will make use of this result in the next section. 
 
Calculating  V 
 
Recall that V is the matrix which transforms vertices in WCS to vertices in CCS.   To calculate V, will first 
consider the transformations necessary to do the equivalent transform of the coordinates axes.   
Namely, we want to find the matrix transform,  TR,  consisting of a translation T and rotation R,  which 
will move the WCS to the CCS.   Following the result of the previous section, V will then be the 
inverse of this, namely, V =  R-1 T-1.    
 
 
Suppose the camera’s position in the WCS is given by the eye vector  
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The camera’s orientation can be defined by the three orthogonal unit 
vectors u, v, and n defined in the WCS, where the camera looks in the direction of –n, and where v is 
perpendicularly up and u is to the camera’s right.   
 
Note: If the WCS and CCS were exactly aligned, then n would correspond to the z axis,  u would 
correspond to the x axis, and v would correspond to the y axis.  
 
The location and orientation of the camera is completely determined by eye, u, v, and n.  We use these 
to determine the transforms TR which move the WCS to the CCS.  We first apply the rotation, and then 
the translation. 
 

 
Figure 6:  Transforming the axes. 



 
In Figure 6, we begin with the WCS and CCS aligned as on the left.   We first rotate by R (middle) and 
then translate by T (right).   It is easy to see that  
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R is less obvious.  Whatever R is, it must satisfy the equations (see middle of Figure 6): 

u = R x,      v = R y,     and    n = R z 
 

In homogeneous coordinates, we have u = 
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Note, the 4th component of each is 0 because these are vectors and not points!  
 
So the above equations become  
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The only matrix R which satisfies all three of these equations is the matrix whose columns are u, v, n (we 
are relying on the fact that u,v, and n are orthonormal vectors):  
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Given R and T, we can now calculate V: 
 
V =  R-1 T-1  =   RT T-1   =   
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In the code, we store the position of the eye = (eyex, eyey ,eyez,1) 



And the view rotation matrix  Vrot = R-1. 
 
 
Order of Transformations: Things to Think About 
 
We now know how to calculate V and thus how to transform points from OCC to WCS to CCS.   
 

PCCS = V PWCS = V M POCS 

 
Think about the following – Do they make sense to you? 
 

POCS = (0,0,0,1)T  corresponds to the center of the object 
PWCS = (0,0,0,1)T  corresponds to the center of the world 
PCCS = (0,0,0,1)T  corresponds to the center of the camera 
 
V (0,0,0,1)T  gives the location of the world origin in the camera coordinate system 
V M (0,0,0,1)T  gives the location of the object’s  center  in the camera coordinate system 
M (0,0,0,1)T  gives the location of the object’s  enter  in the world  coordinate system 

 
Now suppose we have the standard rotation matrix  Rx  about the x-axis, that is  
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The order in which Rx is applied has a big difference on what happens, as follows:  
  

V M Rx POCS rotates a vertex POCS about the object’s x axis 
V Rx M POCS  rotates a vertex POCS about the world’s x axis 
Rx V M POCS rotates a vertex POCS about the camera’s x axis 

 
Tumble 
 
The tumble transformation changes the view transform V as follows: 
 

• We specify a Pc = “center of interest”. This can be anywhere but in the code we limit it to be 
either the WCS origin or a point a fixed distance in front of the camera. 

• Moving the mouse left and right will rotate the camera about the line which goes through Pc  
and is parallel to the WCS y-axis 

• Moving the mouse up and down will rotate the camera about the line which goes through Pc  
and is parallel to the camera’s x axis 

 
Define the following matrices:  
 
The matrix A rotates along the line which goes through a point P and is parallel to the y-axis 

A = T(P) Ry T(-P) 



where we use the notation T(P) to indicate a translation by an amount P. We want A to be applied in the 
WCS so it must multiply V on the right.   The point P corresponds to the point of interest Pc which is 
expressed in WCS.    
 
The matrix B rotates along the line which goes through a point P and is parallel to the x-axis.  

B = T(P) Rx T(-P) 
We want B applied in the CCS so we must multiply V by B on the left.  The point P corresponds to the 
point of interest Pc which now must be expressed in CCS, i.e.   Pc’ = Vold Pc    
 
Thus, to tumble the camera, we have the new view matrix to be 
 
Vnew = B  Vold A  =  T(Pc’) Rx T(-Pc’)   Vold   T(Pc) Ry T(-Pc),       where      Pc’ = Vold Pc 
 

 
In the code, we do not store V but rather the Vrot = rotational part of V,  and  eye = the camera position.  
Thus, we need to extract these from  Vnew.  
 
Recall from earlier we had  
    Vnew  =               Vrot,new                   T(-eyenew)  
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Comparing equations 1 and 2 , it is easy to see that  

Vrot,new=
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However, it is not so easy to extract eyenew because the last column in equation 2 is not eyenew. 
However, if we knew the inverse of Vrot,new, then we could obtain  
 
        T(-eyenew)  =     (Vrot,new

-1 Vrot,new)         T(-eyenew)  
=     Vrot,new

-1      ( Vrot,new  T(-eyenew) )  
=     Vrot,new

-1 Vnew 
 
Since the inverse of a pure rotation is just its transpose, we can easily obtain Vrot,new

-1, so that we can 
calculate   T(-eyenew) = Vrot,new

-T   Vnew. 



Once we have T(-eyenew):  

       T(-eyenew)  = 
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we see that eyenew  can be obtained by pulling out the last column of T(-eyenew), negating the first three 
components to obtain eyenew = (eyex,new, eyey,new, eyez,new, 1).  
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