
Coordinate Systems

There are 3 coordinate systems that a computer graphics programmer is most concerned with: the
Object Coordinate System (OCS), the World Coordinate System (WCS), and the Camera Coordinate
System (CCS). Each plays an important role.

OCS: Objects are most easily modeled in a coordinate system with the origin at its center and the
coordinate axes aligned in some natural way with the object. For example, the sides of a cube would be
aligned with the coordinate axes. Each object will have its own OCS.

WCS: In order for objects to interact, we need to place all objects within a single coordinate system,
called the WCS, so their relationship with can be expressed. We think of the WCS as representing the
environment in which everything exists. Commonly, the WCS origin establishes the level of the ground
and the y axis pointing up. The WCS is typically considered fixed in position over time (objects and
camera move within the WCS). The model matrix, M, converts an object’s vertices expressed in OCS to
the WCS. Each object will have its own M. We use the concept of scene graphs to generate the model
matrix M in order to place and move complex objects within the WCS.

CCS: The camera represents the location & orientation of the viewer. Over time, the viewer generally
moves around the WCS and so the relationship between the CCS and WCS is not constant. The process
of rendering an image requires that a 3D scene (i.e. the vertices) be projected down onto a 2D screen
(the image), where the location and orientation of the screen is defined by the camera. The projection
is simple to do if the vertices are expressed in the camera coordinates, i.e. with the camera at the origin
and looking down the negative z axis (as is the case for the CCS), then the projection will be onto to the
xy plane so that the projection is simply (x,y,z) → (x, y) . Thus, we transform vertices from the WCS to
the CCS in order to simplify the projection calculation.

Things to think about:

When specifying the coordinates of a position, it is important to make it clear which coordinates system
is being used. Consider the point (0,0,0)T . This will mean something different depending on which
coordinate system one is in. For example, in the OCS, the (0,0,0)T generally corresponds to the center
of the object. In the WCS, (0,0,0)T corresponds to the origin of the world, and in CCS, (0,0,0)T
corresponds to the location of the camera. Similarly, the vector (1,0,0)T corresponds to the x axis. The x
axis in the WCS is not in the same direction as the x axis in the CCS.

In general, a point P can be expressed in any of the coordinate systems. This will be discussed more
later.

Transforming OCS →WCS

Consider a cube which might be modeled in the OCS as in Figure 1.

 Figure 1: A cube in OCS. Figure 2: A cube as it appears in OCS and WCS

Let P be a point on a cube such as the vertex at coordinates (.5,.5,.5)T in OCS. Now suppose we want to
place it into “the world” as shown in Figure 2. To do this, we need to transform the coordinates using a
matrix we call the Model Matrix, M.

 PWCS =
















'
'
'

z
y
x

= M POCS = M
















z
y
x

Where M is determined using the scene graph techniques.

WCS →CCS

Given the cube in WCS, we can now transform it into the CCS as shown in Figure 3. All three coordinate
systems are shown in Figure 4.

Figure 3: A cube as it appears in Figure 4: A cube in relation to

WCS and CCS OCS, WCS, and CCS

Notice that in the CCS the camera always looks down the camera’s negative z axis and the y vector
points perpendicularly up from the camera. To determine the coordinates in the CCS, we need to
transform it from WCS to CCS using a matrix transform which we call the View Matrix, V.

PCCS =
















''
''
''

z
y
x

= V PWCS = V
















'
'
'

z
y
x

 = V M POCS = V M
















z
y
x

Note: For example, the point P=(.5,.5,.5)T on the cube as expressed in CCS is

 PCCS = V PWCS = V M POCS = V M
















5.
5.
5.

.

Relationship between Transforming Points and Transforming Coordinate Systems

Before discussing how to calculate V, we need to discuss transformations of coordinate systems.

Note that it is not possible to distinguish between translating a point P in a coordinate system versus
keeping the point fixed but moving the coordinate axes as shown in Figure 5 below. We present the
concepts here in 2D, however, the results extend to 3D.

Figure 5: Moving the coordinate system (left) vs moving the point (right)

The relationship between P and Q’ (on left) is the same as the relationship between P’ and Q (on right):

• On the left, the point P has coordinates (1,3) in Q. We translate the coordinate axes in Q by
(4,3) to obtain Q’ . Expressed in Q’, P now has coordinates (-3,0).

• On the right, we keep Q fixed but translate P=(1,3) by (-4,-3) to that it is now sitting at P’=(-3,0).
• Either way, P ends up at (-3,0) and the transformation that must be applied to the point (on

right) is the inverse of that applied to the coordinate system (on left).

In summary, translating a point by a translation T, is equivalent to translating the coordinate system by
T-1 = inverse of T.

Figure 5: Rotating the coordinate system (left) vs rotating the point (right)

Similarly, it can be shown that rotating a point by the rotation R, is equivalent to rotating the coordinate
system by R-1 = inverse of R.

In general, a transformation A applied to the coordinate axes is equivalent to applying the
transformation A-1 to the vertices.

For example, suppose we apply both a rotation and translation to the coordinate axes: A=TR. This is
equivalent to transforming the vertices by A-1 = (TR)-1 = R-1 T-1.

We will make use of this result in the next section.

Calculating V

Recall that V is the matrix which transforms vertices in WCS to vertices in CCS. To calculate V, will first
consider the transformations necessary to do the equivalent transform of the coordinates axes.
Namely, we want to find the matrix transform, TR, consisting of a translation T and rotation R, which
will move the WCS to the CCS. Following the result of the previous section, V will then be the
inverse of this, namely, V = R-1 T-1.

Suppose the camera’s position in the WCS is given by the eye vector

eye =
















z

y

x

eye
eye
eye

.

The camera’s orientation can be defined by the three orthogonal unit
vectors u, v, and n defined in the WCS, where the camera looks in the direction of –n, and where v is
perpendicularly up and u is to the camera’s right.

Note: If the WCS and CCS were exactly aligned, then n would correspond to the z axis, u would
correspond to the x axis, and v would correspond to the y axis.

The location and orientation of the camera is completely determined by eye, u, v, and n. We use these
to determine the transforms TR which move the WCS to the CCS. We first apply the rotation, and then
the translation.

Figure 6: Transforming the axes.

In Figure 6, we begin with the WCS and CCS aligned as on the left. We first rotate by R (middle) and
then translate by T (right). It is easy to see that

T =



















1000
10
010
001

z

y

x

eye
eye
eye

R is less obvious. Whatever R is, it must satisfy the equations (see middle of Figure 6):

u = R x, v = R y, and n = R z

In homogeneous coordinates, we have u =



















0
z

y

x

u
u
u

 , v =



















0
z

y

x

v
v
v

 , n =



















0
z

y

x

n
n
n

 , x =



















0
0
0
1

 , y =



















0
0
1
0

 , z =



















0
1
0
0

Note, the 4th component of each is 0 because these are vectors and not points!

So the above equations become

u =



















0
z

y

x

u
u
u

 = R



















0
0
0
1

, v =



















0
z

y

x

v
v
v

= R



















0
0
1
0

, and n =



















0
z

y

x

n
n
n

 = R



















0
1
0
0

The only matrix R which satisfies all three of these equations is the matrix whose columns are u, v, n (we
are relying on the fact that u,v, and n are orthonormal vectors):

R =



















1000
0
0
0

zzz

yyy

xxx

nvu
nvu
nvu

Given R and T, we can now calculate V:

V = R-1 T-1 = RT T-1 =



















1000
0
0
0

zyx

zyx

zyx

nnn
vvv
uuu



















−
−
−

1000
100
010
001

z

y

x

eye
eye
eye

=



















−−−
−−−
−−−

1000
zzyyxxzyx

zzyyxxzyx

zzyyxxzyx

eyeneyeneyennnn
eyeveyeveyevvvv
eyeueyeueyeuuuu

In the code, we store the position of the eye = (eyex, eyey ,eyez,1)

And the view rotation matrix Vrot = R-1.

Order of Transformations: Things to Think About

We now know how to calculate V and thus how to transform points from OCC to WCS to CCS.

PCCS = V PWCS = V M POCS

Think about the following – Do they make sense to you?

POCS = (0,0,0,1)T corresponds to the center of the object
PWCS = (0,0,0,1)T corresponds to the center of the world
PCCS = (0,0,0,1)T corresponds to the center of the camera

V (0,0,0,1)T gives the location of the world origin in the camera coordinate system
V M (0,0,0,1)T gives the location of the object’s center in the camera coordinate system
M (0,0,0,1)T gives the location of the object’s enter in the world coordinate system

Now suppose we have the standard rotation matrix Rx about the x-axis, that is

Rx =


















−

1000
0cossin0
0sincos0
0001

θθ
θθ

The order in which Rx is applied has a big difference on what happens, as follows:

V M Rx POCS rotates a vertex POCS about the object’s x axis
V Rx M POCS rotates a vertex POCS about the world’s x axis
Rx V M POCS rotates a vertex POCS about the camera’s x axis

Tumble

The tumble transformation changes the view transform V as follows:

• We specify a Pc = “center of interest”. This can be anywhere but in the code we limit it to be
either the WCS origin or a point a fixed distance in front of the camera.

• Moving the mouse left and right will rotate the camera about the line which goes through Pc
and is parallel to the WCS y-axis

• Moving the mouse up and down will rotate the camera about the line which goes through Pc
and is parallel to the camera’s x axis

Define the following matrices:

The matrix A rotates along the line which goes through a point P and is parallel to the y-axis

A = T(P) Ry T(-P)

where we use the notation T(P) to indicate a translation by an amount P. We want A to be applied in the
WCS so it must multiply V on the right. The point P corresponds to the point of interest Pc which is
expressed in WCS.

The matrix B rotates along the line which goes through a point P and is parallel to the x-axis.

B = T(P) Rx T(-P)
We want B applied in the CCS so we must multiply V by B on the left. The point P corresponds to the
point of interest Pc which now must be expressed in CCS, i.e. Pc’ = Vold Pc

Thus, to tumble the camera, we have the new view matrix to be

Vnew = B Vold A = T(Pc’) Rx T(-Pc’) Vold T(Pc) Ry T(-Pc), where Pc’ = Vold Pc

In the code, we do not store V but rather the Vrot = rotational part of V, and eye = the camera position.
Thus, we need to extract these from Vnew.

Recall from earlier we had
 Vnew = Vrot,new T(-eyenew)

=



















1000
0
0
0

zyx

zyx

zyx

nnn
vvv
uuu



















−
−
−

1000
100
010
001

,

,

,

newz

newy

newx

eye
eye
eye

 (equation 1)

=



















−−−
−−−
−−−

1000
,,,

,,,

,,,

newzznewyynewxxzyx

newzznewyynewxxzyx

newzznewyynewxxzyx

eyeneyeneyennnn
eyeveyeveyevvvv
eyeueyeueyeuuuu

 (equation 2)

Comparing equations 1 and 2 , it is easy to see that

Vrot,new=



















1000
0
0
0

zyx

zyx

zyx

nnn
vvv
uuu

However, it is not so easy to extract eyenew because the last column in equation 2 is not eyenew.
However, if we knew the inverse of Vrot,new, then we could obtain

 T(-eyenew) = (Vrot,new

-1 Vrot,new) T(-eyenew)
= Vrot,new

-1 (Vrot,new T(-eyenew))
= Vrot,new

-1 Vnew

Since the inverse of a pure rotation is just its transpose, we can easily obtain Vrot,new

-1, so that we can
calculate T(-eyenew) = Vrot,new

-T Vnew.

Once we have T(-eyenew):

 T(-eyenew) =



















−
−
−

1000
100
010
001

,

,

,

newz

newy

newx

eye
eye
eye

we see that eyenew can be obtained by pulling out the last column of T(-eyenew), negating the first three
components to obtain eyenew = (eyex,new, eyey,new, eyez,new, 1).

	Coordinate Systems

