
Projection Transformations

The purpose is to deform the frustum into a canonical box defined by the points (-1,-1,1)
to (1,1,-1) (normalized device coordinates) which are independent of device or
application program. By doing this, the subsequent operations such as clipping, hidden
surface removal (culling), and transforming to screen coordinates (viewport) are easy to
do and are identical regardless of the type of projection and/or size of the original
frustum, computer, etc.

Below, we use the following notation to specify the positions of the various planes
defining the frustum:

f = front, n = near, t = top, b = bottom, r = right, l = left

Remember: near is the positive distance of the near plane from the camera. Since the
camera is looking down the negative z axis, the z value of the near plane is at -near

Orthographic:

Transforms frustum into cube with corners ((-1,-1,1) and (1,1,-1)

This matrix can be derived from a translation and scale. The translation is done first; it
moves the frustum so that its center sits at the origin. The scale, then scales everything
about the origin so that the frustum has dimensions 2x2x2:

 T =

























+

+
−

+
−

1000
2

100
2

010
2

001

nf

bt

lr

 S =

























−
−

−

−

1000

0200

0020

0002

nf

bt

lr

The result is that the orthographic transformation is:

























−
−

−

−

1000

0200

0020

0002

nf

bt

lr

























+

+
−

+
−

1000
2

100
2

010
2

001

nf

bt

lr

=

























−
+

−

−
+

−
−

−
+

−
−

1000

200

020

002

fn
nf

fn

bt
bt

bt

lr
lr

lr

Prove to yourself that this works by applying the above transformation to the corners of
the frustum. For example, the point (r,t,-n) should be transformed into (1,1,-1).

Here is the code for doing this from Angel’s mat.h file:

mat4 Ortho(const GLfloat left, const GLfloat right,
 const GLfloat bottom, const GLfloat top,
 const GLfloat zNear, const GLfloat zFar)
{
 mat4 c;
 c[0][0] = 2.0/(right - left);
 c[1][1] = 2.0/(top - bottom);
 c[2][2] = 2.0/(zNear - zFar);
 c[3][3] = 1.0;
 c[0][3] = -(right + left)/(right - left);
 c[1][3] = -(top + bottom)/(top - bottom);
 c[2][3] = -(zFar + zNear)/(zFar - zNear);
 return c;
}

http://en.wikibooks.org/wiki/GLSL_Programming/Vertex_Transformations

Perspective Transform:

Again, we want to transform the frustum into cube with corners ((-1,-1,1) and (1,1,-1).

To understand how to do this transform, consider the following.

We use similar triangles to obtain the relationship
z
y

d
y p = or yp = y / (z/d). Similar for

xp = x/(z/d) to give projected point on the plane at z=d

so























=

1

/

/

'
d

dz
y
dz

x

P

Note:
• Perspective transform is nonlinear
• It depends on z-value, that is, transform is different for every point, which is

problematic. In order to get rid of the z dependence, the division by z/d is done
later and is called the “perspective division”

The resulting matrix for transforming the skewed frustum into a rectangular box is

MP =



















=





































dz
z
y
x

z
y
x

d /11/100
0000
0010
0001

 , Note: M is the same for each point since d is fixed

Later, we need to divide by (w=z/d) to get the point back in the proper format for
homogeneous coordinates (i.e. having a 1 in the last position) to give P' shown above.

The resulting perspective transform (based on the above nonlinear transform combined
with translation and rescaling) gives:

One can show that this works by showing its effect on the corners of the above frustum,
that is, it transforms the frustum into a cube with sides of length 2 and centered at origin.

mat4 Frustum(const GLfloat left, const GLfloat right,
 const GLfloat bottom, const GLfloat top,
 const GLfloat zNear, const GLfloat zFar)
{
 mat4 c;
 c[0][0] = 2.0*zNear/(right - left);
 c[0][2] = (right + left)/(right - left);
 c[1][1] = 2.0*zNear/(top - bottom);
 c[1][2] = (top + bottom)/(top - bottom);
 c[2][2] = -(zFar + zNear)/(zFar - zNear);
 c[2][3] = -2.0*zFar*zNear/(zFar - zNear);
 c[3][2] = -1.0;
 return c;
}

Note – above will require perspective division when done. This division is done
automatically by openGL so the programmer doesn’t have to do it explicitly.

Below (Perspective code) is the same as Frustum code above but it assumes that:
left = - right, and bottom = - top.

mat4 Perspective(const GLfloat fovy, const GLfloat aspect,
 const GLfloat zNear, const GLfloat zFar)
{

 GLfloat top = tan(fovy*DegreesToRadians/2) * zNear;
 GLfloat right = top * aspect;

 mat4 c;
 c[0][0] = zNear/right;
 c[1][1] = zNear/top;
 c[2][2] = -(zFar + zNear)/(zFar - zNear);
 c[2][3] = -2.0*zFar*zNear/(zFar - zNear);
 c[3][2] = -1.0;
 return c;
}

Viewport Transform

The viewport transform converts from the normalized device coordinates to the screen (or
pixel) space.

Which is just a scale and transform in the xy plane. At this point, once can project down
onto the xy plane, essentially just removing the z coordinate.


















+
+

=

1000
0100

2/02/0
2/002/

sys

sxs

hsh
wsw

Viewport

	Projection Transformations
	Perspective Transform:
	Viewport Transform

