Computational neurobiologists have constructed very elaborate computer models of neurons in order to run detailed simulations of particular circuits in the brain. As Computer Scientists, we are more interested in the general properties of neural networks, independent of how they are actually "implemented" in the brain. This means that we can use much simpler, abstract "neurons", which (hopefully) capture the essence of neural computation even if they leave out much of the details of how biological neurons work.
People have implemented model neurons in hardware as electronic circuits, often integrated on VLSI chips. Remember though that computers run much faster than brains - we can therefore run fairly large networks of simple model neurons as software simulations in reasonable time. This has obvious advantages over having to use special "neural" computer hardware.
Our basic computational element (model neuron) is often called a node or unit. It receives input from some other units, or perhaps from an external source. Each input has an associated weight w, which can be modified so as to model synaptic learning. The unit computes some function f of the weighted sum of its inputs:
goto top of page [Next: Linear regression] [Back to the first page]