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A b s t r a c t  

While simple line-drawing techniques produce "jagged" lines 
on raster images, more complex anti-aliasing, or filtering, 
techniques use gray-scale to give the appearance of smooth lines 
and edges. Unfortunately, these techniques are not frequently 
used because filtering is thought to require considerable 
computation. This paper presents a simple algorithm that can be 
used to draw filtered lines; the inner loop is a variant of the 
Bresenham point-plotting algorithm. The algorithm uses table 
lookup to reduce the computation required for filtering. Simple 
variations of the algorithm can be used to draw lines with different 
thicknesses and to smooth edges of polygons. 
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1. I n t r o d u c t i o n  

Computer-generated images that are not properly filtered and 
sampled display annoying visual effects known as a/iasing. The 
most renowned of these effects is the "jaggy" or "staircase" 
appearance of lines and edges that arises from sampling errors. 
On a display device that can present gray-scale images,these 
effects can be avoided by displaying lines and edges using gray 
values lying between white and black. To determine these 
intermediate intensities, the image must be filtered using an 
appropriate low-pass filter before it is sampled [2]. This task can 
be computationally expensive. 

In this paper we present an efficient algorithm for producing 
images with smooth edges of lines and polygons. We will describe 
the algorithm used to draw straight lines with unit thickness, and 
then discuss its variations for lines of different thicknesses and for 
edges of polygons. The algorithm is a variation of the point- 
plotting algorithm developed by Bresenham [1], which requires 
one integer comparison and one integer addition in the inner loop. 
The inner loop of our algorithm requires slightly more arithmetic 
precision and a table-lookup step. Unlike Bresenham's algorithm, 
line endpoints must be treated as a special case, and are the 
subject of Section 4. 

This paper does not present a new filtering technique, but 
rather shows how existing filtering techniques can be 
implemented efficiently. Doubtless algorithms of the sort we 
present are already in use; our objective is to promote the use of 
filtering by publicizing a simple method. 
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2.  F i l t e r i n g  

Filtering an image with a low-pass filter is an averaging process: 
the intensity of a pixel is determined by the image brightnesses 
within a small distance of the pixel, not by the brightness at a 
single point, such as the pixel's center. Filtering is controlled by a 
f i l ter function, which describes the spatial distribution of light 
emitted by a pixel on the display. The filter function in effect 
supplies a weighting function for the averaging process. Filter 
functions used to prepare images need not match the light 
emission properties of the display exactly; in practice, a filter 
function is selected for its mathematical tractability and is altered 
until the image appears acceptable [7]. 

A popular approximate lifter is a conical function: the function 
has its maximum value at the center of a pixel and decreases 
linearly to zero at a distance r from the pixel center. The radius of 
the filter is r, measured using the convention that a unit distance is 
the distance between two adjacent pixel centers. The filter 
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function is normalized so that the enclosing volume is 1. Figure 1 
shows a filter function of radius 1, which we shall use for the 
remainder of this paper? 

Figure 1 : Conical pixel filter. Crosses mark pixel centers. 

Figu re 2: Line intersecting a pixel. 

tPl F(p,1) Ipl FLo,1) 

0/16 0.780 13/16 0.228 
1/16 0.775 14/16 0.184 
2/16 0.760 15/16 0.145 
3/16 0.736 16/16 0.110 
4/16 0.703 17/16 0.080 
5/16 0.662 18/16 0.056 
6/16 0.613 19/16 0.036 
7/16 0.558 20/16 0.021 
8 /16 0.500 21/16 0.010 
9/16 0.441 22/16 0.004 
10/16 0.383 23/16 0.001 
11/16 0.328 ~24/16 O.O00 
12/16 0.276 

Table 1 : Values of pixel intensity given distance to line. 

When a line passes through a pixel, the pixel's intensity should 
be proportional to the volume of the cone intersected by the line 
(see Figure 2). Because of the circular symmetry of the filter, only 
two parameters are needed to determine the volume intersected: 
the thickness t of the line and the perpendicular distance p from 
the pixel center to the line center. Thus we may write I = F(p,t), 
where F is determined solely by the choice of filter function. Table 
1 illustrates values of F for lines of thickness 1, assuming a conical 
filter, of radius 1. Note that F(p,t) = 0 for p > r + t /2 .  The table is 
obtained by convolving the filter function and the line intensity, 
i.e., by numerically integrating the filter function over the region 
covered by the line. Similar tables may be built for other values of 
t and r or for other filter functions. 

3 .  T h e  a l g o r i t h m  

The algorithm to draw a line rfiust compute the distance p 
between each pixel center and the line. To reduce computation, 
this calculation is performed incrementally, as in Bresenham's 
a lgor i thm[ I ] .  Our discussion is restricted to lines of unit 
thickness in the first octant (i.e., 0 <_ y < x); extensions to other 
regions are obvious. Such lines intensify two or three pixels in 

each column of pixels 2 (see Figure 3). The algorithm will keep 
track of the location of the center pixel and the perpendicular 
distance to the line's center from the pixel center. 

Suppose a line is to be drawn from (Xl, yt) to (x2, y2). We shall 
assume that line endpoints lie at pixel centers, and hence that Xl, 
Yt' x2' and Y2 are integers. If dx = x2 -x  t and dy = y2-Yl, then 
from our first octant assumption, the slope m = d y / d x  has a value 
between 0 and 1. In algorithm A1 below, x and y track the central 
pixel in each column through which the line passes, and v is the 
vertical distance from that pixel to the line. This vertical distance v 
is a signed value; a positive value indicates that the center of the 
line is above the center of the pixel, and a negative value indicates 
the opposite. The variable s is a threshold distance used to decide 
whether the central pixel in the next column lies diagonally or 
horizontally across from the central pixel in the current column. 

=1 

J 

J 

Figure 3: Three pixels are shaded in each column. 

1Selecting a filter radius is a compromise between a desire for very smooth 
edges (choose a large r) and preserving high spatial frequencies (choose a small 
r). A filter of radius 1, on most displays, will produce edges that still appear 
somewhat wavy. A filter of radius 1.5 will produce quite smooth edges. 

2The algorithms and tables presented in this paper are designed to produce 
images using 4-bit intensity values. A diagonal line at almost 45 degrees will 
actually intersect five rather than three pixets, but the top and bottom pixels are 
intensified at less than 0.2% of the maximum. Our algorithm ignores these pixels 
because a 4-bit intensity value will record zero for such an intensity. If a wider 
range of intensities is availabte, the algorithm may be modified in an obvious way to 
illuminate more pixels in each column; the tables must also provide more 
precision. 
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A l g o r i t h m  A I :  

PROCEDURE P l o t L f n e ( x l , y l , x Z , y 2  : INTEGER); 
VAR x , y  : INTEGER; v ,m,s  : REAL; 
m := ( y 2 - y l ) / ( x 2 - x l ) ;  
v := O; s := O.5-m; 
y := y t ;  
FOR x := x l  TO x2 DO 
BEGIN 

Shads p l x s l s  a t  ( x , y - 1 ) , ( x , y ) , ( x , y + l ) ;  
IF (v > s)  THEN 

BEGIN 
y := y + l ;  
v := v+m-1; 

END 
ELSE 

V := v+m; 
END; 

The pixel at (x, y) is located at a vertical distance v from the line, 
and the pixels at (x, y - l )  and (x, y + l )  are at distances v-1 and 
v + 1 respectively. 

In order to determine the shade of the pixels, we need to 
compute the perpendicular distance p from the pixel to the line. 
The vertical distances are related to the perdendicular distances 
by a factor of c = dx/sqrt(dx 2 + dy2)), such that p = cv. Algorithm 
A2 shows the modifications to compute perpendicular distances. 

A l g o r i t h m  A2: 

PROCEDURE P l o t L i n e ( x l , y t , x 2 , y 2  : INTEGER); 
VAR x , y  : INTEGER; p , m , c , s  : REAL; 
m := ( y 2 - y l ) / ( x 2 - x l ) ;  
c := 1 / s q r t ( m * m + l ) ;  
p := O; s := ( O . 6 - m ) * c ;  
y : = y l ;  
FOR x := x l  TO x2 DO 
BEGIN 

Shade p t x e l s  a t  ( x , y - 1 ) , ( x , y ) , ( x , y + l ) ;  
IF  (p > s)  THEN 

BEGIN 
y := y + t ;  
p := p + ( m - 1 ) * c ;  

END 
ELSE 

p := p+m*c; 
END; 

The two expressions (m-1)*c and m*c can be precomputed and 
do not have to be computed repeatedly in the inner loop. To 
compute the pixel shades, the absolute values of p, p - c ,  and p + c 
are used as indices into Table 1 to determine intensities at (x, y), 
(x, y-1) and (x, y + 1 ) respectively. 

4. Line endpoints 
The algorithm presented in the previous section does not 

compute the sampled values of pixels lying on or near the 
endpoints of the line. The situation is illustrated in Figure 4, which 
shows an endpoint of a line. The pixels shown with their 
surrounding filters are not intensified properly by algorithm A2; in 
fact, some of them are not intensified at all. There are several 
methods available to compute such pixel intensities. 

As for other pixels near the line, the intensity of one of the pixels 
is obtained by convolvin 9 the filter function and the line, i.e., by 
integrating the filter function over the region covered by the line. 
This computation may be performed exactly using geometric 
operations [3], or may be approximated by sampling the image at 
points much more closely spaced than pixel centers. Both of 
these approaches are computationally expensive. 

Figure 4: Endpoint of a line, marked by a large dot, 
showing the six pixels that may be intensified. 

Slope = 0/16 Slope = 1/16 Slope = 2/16 
0.000 0.056 0.000 0.063 0.000 0.072 
O.O00 0.393 O.O00 0.390 O.O00 0.390 
O.O00 0.056 0.000 0.048 0.000 0.942 

Slope = 3/16 Slope = 4/16 Slope = 5/16 
0.000 0.082 0.000 0.094 0.000 0.107 
0.000 0.390 0.000 0.390 0.000 0.390 
0.000 0.037 O.OOO 0.032 0.000 0.028 

Slope = 6/16 Slope = 7/16 Slope = 8/16 
0.000 0.121 0.000 0.136 0.000 0.152 
0.001 0.390 0.001 0.390 0.002 0.391 
0.000 0.025 0.000 0.022 0.000 0.019 

Slope = 9/16 Slope = 10/16 Slope = 11/16 
0.000 0.169 0.000 0.187 0.000 0.206 
0.002 0.390 0.003 0.390 0.003 0.390 
0.000 0.017 0.000 0.015 0.000 0.013 

Slope = 12/16 Slope = 13/16 Slope = 14/16 
0.000 0.225 0.000 0.245 0.000 0.264 
0.004 0.390 0.005 0.390 0.006 0.390 
0.000 0.012 0.000 0.010 0.000 0.009 

Slope -- 15/16 Slope = 16/16 
0.001 0.284 0.001 0.304 
0.007 0.390 0.007 0.391 
0.000 0.008 0.000 0.007 

Table 2: Endpoints for lines with different slopes. 

The pixel intensities can be precomputed and stored in a table, 
as we did for lines in the preceding section. To display the 
endpoint of a line, the intensities of the six pixels in the vicinity are 
determined from the table. For the accuracy we desire, it is 
sufficient to compute a set of endpoints for lines with slopes 
between 0 and 1 at intervals of 1/16 (see Table 2). The entries in 
the table are in the same configuration as the six pixels shown in 
Figure 4. Using a combination of mirroring and transposition 
transformations, these endpoint intensities can be used for lines in 
every octant. 
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5.  V a r i a t i o n s  

Simple variations of the algorithm presented above can handle 
lines of different thicknesses and can produce smooth edges for 
polygons. 

Lines of different thickness can be produced by preparing 
different tables for various line thicknesses and using the 
thickness of the line to select an appropriate table. In addition, if 
the thickness is greater than one, the algorithm must be changed 
to illuminate more than three pixels in each column. The endpoint 
table must be modified, because more than six pixels may be 
illuminated near wide lines. 

Alternative geometries for line endpoints (see Figure 5) can be 
accommodated by building separate endpoint tables. The tables 
are built by numerically integrating the filter function in the region 
covered by the line. 

Figure 5: Alternative endpoint geometries for a line. 

Figure 6: Polygon edge intersecting a pixel. 

Polygon edges can be produced in a similar manner by having a 
special table which contains the intensity values when the pixel is 
covered by the edge of a polygon (see Figure 6). Table 3 is used to 
look up the intensity of the pixel based on the perpendicular 
distance p from the edge of the polygon to the center of the pixel; 
p is negative if the pixel center lies outside the edge. Note that if p 
< -r, F(p) = 0; i fp > r, F(p) = 1. The tables required to draw lines 
can be derived from Table 3 because the part of the pixel covered 
by a line is the difference between the parts of the pixel covered 
by the two edges of the line. However, because line drawing is a 
frequent operation, it is advantageous to compile separate tables. 

p F(p) p FLo) 

~-16/16 0.000 1/16 0.559 
-15/16 0.001 2/16 0.617 
-14/16 0.004 3/16 0.672 
-13/16 0.010 4/16 0.724 
-12/16 0.021 5/16 0.772 
-11/16 0.036 6/16 0.816 
-10/16 0.056 7/16 0.855 
-9/16 0.080 8/16 0.890 
-8/16 0.110 9/16 0.920 
-7/16 0.145 10/16 0.944 
-6/16 0.184 11/16 0.964 
-5/16 0.228 12/16 0.979 
-4/16 0.276 13/16 0.990 
-3/16 0.328 14/16 0.996 
-2/16 0.383 15/16 0.999 
-1 /16 0.441 ~16/16 1.000 
0/16 0.500 

Table. 3: Pixel intensities given distance to edge of polygon. 

Another desirable variation is the ability to experiment with 
different filters, because the aesthetic appearance of the output 
depends upon the filter used for anti-aliasing. The optimal filter will 
be different for different output devices. In this paper we have 
used a circularly symmetric filter which has the property that only 
the distance to the line is needed to compute the intensity of 
pixels. The use of an asymmetric filter will require knowledge of 
the slope of the line to compute intensities. This does not affect 
the algorithm significantly because we can use a few bits of the 
slope (2 or 3 depending upon the filter) to select a table that can 
then be used by our algorithm. 

The algorithm may be easily adapted to display lines of any 
shade on backgrounds of any shade by mixing intensities. The 
pixel intensity is / = ILFLO,t) + IB(1-F(p,t)), where I L is the line 
shade, and I B is the background shade. On color displays, the 
red, green and blue components can be mixed independently. 

The algorithm can be adapted to display lines and edges drawn 
between endpoints that are not integers; that is, that do not lie on 
the pixel grid. Such a scheme is necessary to avoid additional 
aliasing, for example the jitter in a moving image caused by 
quantizing endpoints to lie on pixel centers. To accommodate 
non-integer endpoints, two modifications must be made. First, the 
initialization of algorithm A2 must be changed to compute the 
(x, y) coordinate of the first pixel to be illuminated and to compute 
the initial value for p at this point. Algorithm A3 shows these 
modifications. 
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A l g o r i t h m  A3: 

PROCEDURE Plot, L tns (x l , , y l , x?_ , , y2  : INTEGER); 
VAR x , y  : INTEGER; p , m , c , s  : REAL; 
m := ( y Z - y l ) / ( x 2 - x l ) ;  
c := 1/sqrt(m,m+1); 
y% := yt+m'(round(xl_)-x%); 
y := round (y l ) ;  
p := ( y l - y ) ' c  ; 
s := (O.5-m) 'c;  
FOR x := round(x t )  TO round(x2) DO 
BEGIN 

Shads p i xe l s  at, ( x , y - 1 ) , ( x , y ) , ( x , y + % ) ;  
IF (p > s) THEN 

BEGIN 
y := y+%; 
p := p+(m-%)'c; 

END 
ELSE 

p := p+m*c; 
END; 

The second change is that samples near endpoints need to take 
account of the exact location of the line endpoint. We either have 
to spend a lot of processing to filter these pixels or use a much 
larger table to look up the filtered values. If the table contains 
endpoints at intervals of 1/16 for each of the coordinates and an 
interval of 1/16 for the slope, then the size of the table at six pixels 
per endpoint would be 29478 entries! 

6 .  P r e c i s i o n  

One of the major accomplishments of Bresenham's algorithm is 
to perform line drawing computations using only integer additions 
and comparisons. Although we use floating-point numbers in the 
exposition above, the algorithms do not require the large range 
provided by a floating-point representation. To understand the 
precision required, let us examine the variable p in algorithm A2. 
Since the intensity table is spaced at intervals of 2 .4 , we need to 
know p accurately to within 2 .4 to find the correct intensity value. 
Assume that the value of p is computed incrementally using at 
most 210 additions for a display that is 1024 pixels wide. 
Consequently, the expressions m°c and (m-1)*c must be known 
to an accuracy of 2 15 (i.e., if the error in representing one of these 
numbers is as much as 2 -15, 210 additions will accumulate an error 
of 2 .5 , which is not enough to introduce an error in the intensity 
selected). Thus p can be replaced in the algorithm by an integer 
q = 215p; since p lies between -0.5 and + 0.5, q will lie between 
- 2  TM and +2  TM. We observe too that p = (q/211)/16, and 

therefore that q/211 can be used as an index into Table 1 3 The 
precision required in the incremental computation of p is a direct 
consequence of the size of the display (the number of incremental 
additions) and the intensity precision we are trying to achieve. If 
the function F(p, t) were linear, in order to achieve n bits of gray- 
scale precision, n bits of distance precision would be required, 
and therefore the lookup tables would record entries spaced a 
distance L 5n apart. Although F is not precisely linear, the 
deviations are sufficiently small that the distance precision need 
be no greater than the intensity precision. The choice of gray- 
scale precision is an aesthetic one, which depends upon factors 

such as type of output device, viewing distance, etc. [4]. Thus the 
choice of intensity precision will determine the number of entries 
needed in the various tables of the algorithms. 

7.  C o n c l u s i o n  

Our objective in presenting a fast algorithm for producing 
properly filtered images of lines and edges on gray-scale displays 
is to demonstrate that filtering need not be expensive. The 
algorithm achieves its speed by using table lookup to avoid 
complex filtering computations. The computations are so simple 
that it is not reasonable to exploit gray-scale and not filter properly 
(e.g., in [5]). 

The algorithm leaves open the important problem of sampling 
two or more interacting lines or edges properly. The algorithm 
presented by Feibush et. a/. [3] treats this problem properly, but at 
considerable computational expense. Approximations often 
produce usable results, e.g., taking the maximum intensity or 
multiplying the intensities of the two objects that lie in a single 
pixel. 
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