1. (a) Using P(15, 250), we construct the following table:

t	Q	$slope = m_{PQ}$
5	(5,694)	$\frac{694 - 250}{5 - 15} = -\frac{444}{10} = -44.4$
10	(10, 444)	$\frac{444 - 250}{10 - 15} = -\frac{194}{5} = -38.8$
20	(20, 111)	$\frac{111 - 250}{20 - 15} = -\frac{139}{5} = -27.8$
25	(25, 28)	$\frac{28 - 250}{25 - 15} = -\frac{222}{10} = -22.2$
30	(30, 0)	$\frac{0-250}{30-15} = -\frac{250}{15} = -16.\overline{6}$

(b) Using the values of t that correspond to the points closest to $P\ (t=10\ {\rm and}\ t=20),$ we have

$$\frac{-38.8 + (-27.8)}{2} = -33.3$$

(c) From the graph, we can estimate the slope of the tangent line at P to be $\frac{-300}{9} = -33.\overline{3}$.

6. (a) $y = y(t) = 10t - 1.86t^2$. At t = 1, $y = 10(1) - 1.86(1)^2 = 8.14$. The average velocity between times 1 and 1 + h is

$$v_{\text{ave}} = \frac{y(1+h) - y(1)}{(1+h) - 1} = \frac{\left[10(1+h) - 1.86(1+h)^2\right] - 8.14}{h} = \frac{6.28h - 1.86h^2}{h} = 6.28 - 1.86h, \text{ if } h \neq 0.$$

(i)
$$[1, 2]$$
: $h = 1$, $v_{ave} = 4.42 \text{ m/s}$

(ii) [1, 1.5]:
$$h = 0.5$$
, $v_{\text{ave}} = 5.35 \text{ m/s}$

(iii) [1, 1.1]:
$$h = 0.1, v_{\text{ave}} = 6.094 \, \text{m/s}$$

(iv) [1, 1.01]:
$$h = 0.01$$
, $v_{ave} = 6.2614$ m/s

(v) [1, 1.001]:
$$h = 0.001$$
, $v_{ave} = 6.27814$ m/s

- (b) The instantaneous velocity when t = 1 (h approaches 0) is 6.28 m/s.
- 1. As x approaches 2, f(x) approaches 5. [Or, the values of f(x) can be made as close to 5 as we like by taking x sufficiently close to 2 (but $x \neq 2$).] Yes, the graph could have a hole at (2,5) and be defined such that f(2) = 3.
- 2. As x approaches 1 from the left, f(x) approaches 3; and as x approaches 1 from the right, f(x) approaches 7. No, the limit does not exist because the left- and right-hand limits are different.

4. (a)
$$\lim_{x \to 0} f(x) = 3$$

(b)
$$\lim_{x \to 3^-} f(x) = 4$$

(c)
$$\lim_{x \to 3^+} f(x) = 2$$

- (d) $\lim_{x\to 3} f(x)$ does not exist because the limits in part (b) and part (c) are not equal.
- (e) f(3) = 3

8. (a)
$$\lim_{x\to 2} R(x) = -\infty$$

(b)
$$\lim_{x\to 5} R(x) = \infty$$

(c)
$$\lim_{x \to -3^-} R(x) = -\infty$$

(d)
$$\lim_{x \to -3^+} R(x) = \infty$$

(e) The equations of the vertical asymptotes are x = -3, x = 2, and x = 5.

10. $\lim_{t\to 12^-} f(t) = 150$ mg and $\lim_{t\to 12^+} f(t) = 300$ mg. These limits show that there is an abrupt change in the amount of drug in

the patient's bloodstream at $t=12~\mathrm{h}$. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

14.
$$\lim_{x \to 0^{-}} f(x) = 1$$
, $\lim_{x \to 0^{+}} f(x) = -1$, $\lim_{x \to 2^{-}} f(x) = 0$,

$$\lim_{x \to 2^+} f(x) = 1, \quad f(2) = 1, \quad f(0) \text{ is undefined}$$

18. For
$$f(x) = \frac{x^2 - 2x}{x^2 - x - 2}$$

\boldsymbol{x}	f(x)		x	f(x)
0	0		-2	2
-0.5	-1		-1.5	3
-0.9	-9		-1.1	11
-0.95	-19		-1.01	101
-0.99	-99		-1.001	1001
-0.999	-999			

It appears that $\lim_{x\to -1} \frac{x^2-2x}{x^2-x-2}$ does not exist since

$$f(x) \to \infty$$
 as $x \to -1^-$ and $f(x) \to -\infty$ as $x \to -1^+$.

21. For $f(x) =$	$\sqrt{x+4}-2$
21. For $f(x)$ —	x

x	f(x)	x	f(x)
1	0.236068	-1	0.267949
0.5	0.242641	-0.5	0.258343
0.1	0.248457	-0.1	0.251582
0.05	0.249224	-0.05	0.250786
0.01	0.249844	-0.01	0.250156

It appears that
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x} = 0.25 = \frac{1}{4}.$$

$$28. \ \lim_{x \to 0} \frac{x-1}{x^2(x+2)} = -\infty \ \text{since} \ x^2 \to 0 \ \text{as} \ x \to 0 \ \text{and} \ \frac{x-1}{x^2(x+2)} < 0 \ \text{for} \ 0 < x < 1 \ \text{and for} \ -2 < x < 0.$$