MATH 142 Midterm Exam #1

O	ctober	4.	2004

10:20AM, Prof Johnson

NAME:	

- No calculators are allowed on this exam.
- Answers such as $\frac{23\cdot5}{30} \frac{2^5}{3\cdot34}$ are perfectly fine!! However you MUST simplify expressions such as $\sin(\pi/3)$.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please include all information about the u-substitutions or integration by parts choice(s) that you make.

$\sin^2 x = \frac{1}{2}(1 - \cos(2x)) \cos^2 x = \frac{1}{2}(1 + \cos(2x)) \sin(2x) = \frac{1}{2}(1 + \cos(2x))$
--

Problem	Points	Score
1 (a)(b)	30	
1 (c)	15	
2	15	
3	25	
4	15	
total	100	

1. Integrals.

[45 points, 15 each]

Evaluate the integrals. Show all work and include all information about substitutions and integration by parts choices, and restrictions on angles for substitutions etc.

(a)
$$\int_0^1 e^{6x+2} dx$$

(b)
$$\int_{1}^{2} x^{4} \ln(3x) \ dx$$

(c)
$$\int_0^1 3\sin(\frac{\pi x}{4}) \ dx$$

2. The velocity of a tug boat is given by $v(t) = 5t^{-1} + \sqrt{t^5}$ meters per minute, for $1 \le t \le 10$ minutes. Find the average velocity of the boat over the time interval t = 2 to t = 6 minutes.

Note: On this problem, you can earn partial credit for parts (b)-(e) by sketching an arbitrary slice of the volume in the space provided in the left margin.

Consider the region, R which is bounded between the curves

$$y = x^2 + 4x + 4$$
 $y = -x + 4$

(a) Sketch the region.

Label the points of intersection.

(b) Write an integral for the volume of the solid formed by rotating this region R about the line x=2. DO NOT evaluate the integral.

(c) Now consider the solid whose base is the region R and whose cross-sections above the xy-plane and perpendicular to the x-axis (i.e. slices parallel to the y-axis) are squares. Write an integral for the volume of this solid, but DO NOT evaluate the integral.

4. <u>Work.</u> [15 points]

The tank pictured below is filled with oil to a depth of 2 meters. You may assume the oil has a density of 1380 kg/m^3 . Write BUT DO NOT EVALUATE the integral which calculates the work required to pump the oil out of the outlet on the top of the tank. Note: the acceleration due to gravity is 9.8 m/sec^2 .