

Name:	Group Members:
Date:	
Show all work for full credit.	
Fill in the blanks with the correct statement of the in	tegral test.
The Integral Test:	
If $f(x)$ is continuous, positive, and	on $[1,\infty)$, and $f(n) = a_n$,
then	
(i) If $\int_1^\infty f(x) dx$ is convergent, then	is also convergent.
(ii) If $\int_1^{\infty} f(x) dx$ is divergent, then	is also divergent.

Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} n^3 e^{-n^2}$$

Quiz 10

Name:	
Date:	

Group Members:

Fill in the blanks with the correct statement of the Comparison test. (Note, two of the blanks below should be filled in with "the comparison test tells us NOTHING!")

The Comparison Test:

Suppose $\sum a_n$ and $\sum b_n$ are series with POSITIVE terms.

(i) If $a_n \leq b_n$ and the series $\sum b_n$ is divergent, then _____.

(ii) If $a_n \leq b_n$ and the series $\sum a_n$ is divergent, then _____.

(iii) If $a_n \leq b_n$ and the series $\sum b_n$ is convergent, then _____.

(iv) If $a_n \leq b_n$ and the series $\sum a_n$ is convergent, then _____.

Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n\sqrt{n}}$$

 $\sum_{n=1}^{\infty} \frac{2n^2}{n+1}$

Name: Date: Group Members:

Fill in the blanks with the correct statement to the limit comparison test. (Note: in some blanks you should enter "the limit comparison test tells us NOTHING!")

Limit Comparison test:

Suppose $\sum a_n$ and $\sum b_n$ are series with _____ terms.

If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, then ______. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where c is finite and c > 0, then ______. If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, then ______.

Determine whether the series is convergent or divergent.

$$\sum_{n=1}^\infty \frac{n+1}{\sqrt{n^4+3n+12}}$$