Group Exam 7	Name:
Math 142	Name of group member:
Professor Johnson	Name of group member:

Problem 1: For each of the sequences below:

(i) Find the first 5 terms of the sequence.

(ii) Determine whether the sequence converges or diverges. If it converges, find the limit. If it diverges explain why.

a) $\{n3^{-n}\}_{n=1}^{\infty}$

b) $\{\frac{(n+2)!}{n!}\}_{n=4}^{\infty}$

c) $\{2 + (-1)^n\}_{n=1}^{\infty}$

Signature line: _

Group Exam 7

Math 142

Professor Johnson

Name:

Name of group member:

Name of group member:

Problem 2: Find the 4th degree Taylor polynomial for $f(x) = \sqrt[3]{x}$ centered at x = 8.

Use this Taylor polynomial to approximate $\sqrt[3]{8.2}$ (you may use your calculator for this calculation). How many decimal places (to the right of the decimal point) are accurate in your approximation? What is the error?

Signature line: _____

 Group Exam 7
 Name:

 Math 142
 Name of group member:

 Professor Johnson
 Name of group member:

Problem 3: Find a general formula for the k^{th} degree Taylor polynomial centered at x = 0 of $f(x) = \sin(x)$. Hint: Find the coefficients c_0, c_1, c_2, c_3 , etc until you see the pattern for c_n .

Use your graphing calculator to graph the functions $T_{15}(x)$ and $f(x) = \sin(x)$ in the same window. Sketch the graphs below and give a range of x-values where the approximation $\sin(x) \approx T_{15}(x)$ looks like a good approximation.

Signature line: _____