Group Exam 2	Name:
Math 142, 11:30AM	Name of group member:
Professor Johnson	Name of group member:

Problem 1:

(a) Find the volume of the solid obtained by rotating the region bounded by $y = \frac{1}{\sqrt{x+1}}, 0 \le x \le 1$, about the x-axis.

(b) Find the volume of the solid obtained by rotating the region bounded by $y = \frac{1}{1+x^2}$, $0 \le x \le 3$, about the *y*-axis.

Group Exam 2	Name:	
Math 142, 11:30AM	Name of group member:	
Professor Johnson	Name of group member:	

Problem 2:

The secant function is not one-to-one, so its domain is restricted to $[0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$ in order to define the inverse secant function.

 $\sec^{-1}(x) = y$ means $\sec(y) = x$ and, $0 \le y < \frac{\pi}{2}$ or $\pi \le y < \frac{3\pi}{2}$

Follow the steps below to find the derivative of the $\sec^{-1}(x)$ function.

Let $y = \sec^{-1}(x)$, then we *want* to find a formula for $\frac{dy}{dx}$. By the definition of $\sec^{-1}(x)$ given above, y is an angle in one of the two intervals above and

$$\sec(y) = x$$
 [1]

(a) Use the chain rule to take the derivative of formula [1] above, then find a formula for $\frac{dy}{dx}$. (Note, your answer here will have a y in it, but we will find a formula with only x's in it by following the steps below.)

(b) Label all three sides of the right triangle to reflect the fact that $\sec(y) = x = \frac{x}{1}$.

(c) Use the triangle above to find the formula for $\frac{dy}{dx}$ in terms of x.

$$\frac{d}{dx}(\sec^{-1}(x)) = \frac{dy}{dx} = _$$

(e) Calculate $\frac{d}{dx}\left(\sqrt{\sec^{-1}(9x)}\right)$

Signature line:

Group Exam 2	Name:	
Math 142, 11:30AM	Name of group member:	
Professor Johnson	Name of group member:	

Problem 3:

(a) Draw the graph of $f(x) = \sin^{-1}(x)$. [Hint: first draw a graph of $y = \sin(x)$ with the appropriate restricted domain.]

(a.1) The integral $\int_0^1 \sin^{-1}(x) dx$ represents an area in your picture above. Shade the area it represents.

(a.2) Now calculate the shaded area by slicing the region parallel to the x-axis, i.e. thickness Δy , and setting up the appropriate integral with respect to y.

(b) Calculate
$$\int_{\sqrt[3]{0.5}}^{1} \frac{t^2}{\sqrt{1-t^6}} dt$$

(Hint: what is the derivative of $\sin^{-1}(t)$?)