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Abstract. We extend the work of Robinson and Turner to use hypothesis
testing with persistent homology to test for measurable differences in shape be-

tween the spaces of three or more groups. We conduct a large-scale simulation

study to validate our proposed extension, considering various combinations of
groups, samples sizes and measurement errors. For each such combination, the

percentage of p-values below an alpha-level of 0.05 is provided. Additionally,

we apply our method to a Cardiotocography data set and find statistically
significant evidence of measurable differences in shape between the spaces cor-

responding to normal, suspect and pathologic health status groups.

1. Introduction

Consider a data set, obtained via random sampling, where each data point is a
vector of m quantitative variables and one categorical variable with s levels. Ideally,
several of the quantitative variables are real-valued. According to the levels of the
categorical variable, we will group the data points into s not necessarily distinct
collections of points in Rm, referred to as point clouds. For each group, we can view
the corresponding point cloud as a representative subset of a space which consists
of all such points in Rm with the respective level of the categorical variable. Of
interest is whether or not these s spaces have measurably different shapes? But
what does shape even mean if m is large?

Topology, in particular algebraic topology, is an area of mathematics that can
be used to qualitatively measure the shape of a point cloud. For a given point
cloud, we construct an infinite family of simplicial complexes that vary according
to a real-valued distance parameter. Each complex in the family is an object that
inherits a shape from the point cloud and the topological tool known as homol-
ogy can be used to detect this shape. Since any single complex within the infinite
family corresponds to a choice of parameter value, we might ask which parameter
value, if any, “best” captures the shape of the point cloud? Persistent homology
is a study of the homological features that persist over long intervals of the dis-
tance parameter, thus sidestepping the search for a best choice parameter value.
Hence, persistent homology can be used to determine if point clouds have different
shape. While persistent homology allows comparisons of shape across point clouds
obtained from a sample of data points, can any resulting differences then be gen-
eralized to the corresponding spaces at large? The answer is yes, but as random
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sampling unavoidably introduces variability, a method is needed which can distin-
guish “true” differences in shape between the spaces from “artificial” differences
in shape between the point clouds obtained via random sampling of data points.
Statistical hypothesis testing is an inferential method often implemented to assess
whether or not randomly sampled data provide sufficient evidence of a difference,
with respect to some characteristic, between two or more populations, which we
have been and will continue to loosely refer to as spaces. In the 2013 results of K.
Turner and A. Robinson, such an assessment is conducted on s = 2 spaces using a
specific type of hypothesis testing procedure known as a permutation test, where
the characteristic of interest is shape [12], as measured via persistent homology.
As this procedure requires multiple point clouds from both spaces, in practice the
two point clouds obtained from the random sample of data points are further par-
titioned, via subsampling, into multiple “smaller,” or less dense, point clouds. The
assessment is then conducted using the persistent homology of these subsampled
points clouds within the procedure. In this paper we extend this procedure to three
or more spaces, s ≥ 3.

The remainder of the paper is organized as follows. In Section 2 we provide def-
initions of the Vietoris-Rips complex of a point cloud, homology groups, persistent
homology and persistence diagrams. In Section 3 we describe the permutation test
of Robinson and Turner. In Section 4 we propose an extension of the permutation
test for three or more spaces. In Section 5 we present the results of a large-scale
simulation study, incorporating various measurement errors and sample sizes, that
validate our proposed extension. Finally, in Section 6 we apply our extension to
a Cardiotocography data set and find significant evidence of differences in shape,
as measured by persistent homology, between the spaces corresponding to normal,
suspect and pathologic health groups. 1

2. Persistent Homology

Before defining the persistent homology of a point cloud, we associate to the
point cloud a nested family of abstract simplicial complexes. A thorough explana-
tion of simplicial complexes and abstract simplicial complexes is available in many
sources [4, 9]. Here we motivate the definition of an abstract simplicial complex
with a brief geometric introduction to simplicial complexes, followed by the defi-
nition of the Vietoris-Rips complex which is the abstract simplicial complex used
herein.

Geometrically, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is
a triangular subset of a plane, a 3-simplex is a solid tetrahedron, and an n-simplex
is the n-dimensional analogue of these convex sets. Observe that the boundary
of an n-simplex, σ, is a collection of (n − 1)-simplices; these boundary simplices
are called faces of σ. A simplicial complex is a collection of simplices in Rd that
satisfy certain subset and intersection properties specifying how simplices can be
put together to create a larger structure. More precisely, a simplicial complex is a
finite collection of simplices, K, such that (1) if σ ∈ K and ρ is a face of σ then
ρ ∈ K, and (2) given any two simplices σ1, σ2 ∈ K then σ1 ∩σ2 is either the empty
set or a face of both σ1 and σ2. More generally, and without relying on geometry,
an abstract simplicial complex is a finite collection of sets, A, such that if α ∈ A

1Throughout this paper we use the language difference in shape to mean shape as measured
by persistent homology in a specified dimension.
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and β ⊆ α, then β ∈ A. It is well known that a finite abstract simplicial complex
can be geometrically realized as a simplicial complex in RN for N sufficiently large.

2.1. The Vietoris-Rips Complex. The Vietoris-Rips complex, denoted V R(D, r),
is an abstract simplicial complex associated to a point cloud D for a fixed radius
value r > 0. The elements of D form the 0-simplices or vertex set of V R(D, r). A
simplex of V R(D, r) is a finite subset α of D such that the diameter of α is less
than r. A simplex α ⊆ D with k-elements is called a (k− 1)-simplex of D. Thus, a
1-simplex corresponds to a two element set (viewed geometrically as the endpoints
of a line segment), a 2-simplex corresponds to a three element set (viewed as the
vertices of a triangle), and so on. Observe that if α is a k-simplex, then every
subset of α is a simplex of D as the diameter of a subset of α can be no larger than
the diameter of α. Hence the Vietoris-Rips complex satisfies the definition of an
abstract simplicial complex. For readers that are new to topological data analysis,
an example Vietoris-Rips complex is given in the appendix.

We note that Vietoris-Rips complexes for increasing radius values are always a
nested family of simplicial complexes associated to D, that is the complexes satisfy

V R(D, r1) ⊆ V R(D, r2) whenever r1 ≤ r2.

This nested feature of the complexes along with the functorial nature of homology
are what give rise the the concept of persistence to be defined below.

Although the Vietoris-Rips complex is relatively straightforward to define and
calculate, it can be computationally expensive when used with large point clouds.
There are economical alternatives to the Vietoris-Rips complex, such as the lazy
witness complex introduced in [1]. Persistent homology can be applied using any
nested family of complexes indexed by some parameter.

2.2. Homology. The homology of a simplicial complex K is an algebraic measure-
ment of how the n-simplices are attached to the (n− 1)-simplices within K. Below
we define some technical machinery (chains, boundary maps, and cycles) used to
define homology groups.

The p-chains of a simplicial complex K, denoted Cp(K), is the group of formal
linear combinations of the p-simplices of K with coefficients from Z2. (More general
definitions of homology with ring coefficients can be found in the standard algebraic
topology texts [4, 5].) Since Z2 is a field, the p-chains of K are a Z2-vector spaces
with basis the p-simplices of K.

The boundary map, denoted δp, identifies each p-chain with its boundary, a p−1
chain. Each boundary map, δp : Cp → Cp−1, is a homomorphism and in the case
of Z2 coefficients, as considered here, these maps are linear transformations.

Notice that δp ◦ δp+1 is the zero map as the boundary of a boundary is empty.
This fundamental property of chain complexes ensures that the image of δp+1 is
a normal subgroup of the kernel of δp. The collective sequence of boundary maps
and chains, as shown below, is called a chain complex.

· · · δn→ Cn(K)
δn−1→ · · · δ2→ C1(K)

δ1→ C0(K)
δ0→ 0,

Homology groups are defined using both the kernel and image of each boundary
map. The kernel of δp is the set of all p-chains whose boundary is empty. The
elements of the kernel of δp are called p-cycles of K. The image of δp+1 is the set
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of p-chains that are boundaries of a p + 1-chain. The pth homology group of K,
denoted Hp(K;Z2), is defined as the quotient group ker(δp)/image(δp+1).

As the parameter r > 0 increases the Vietoris-Rips complex includes more sim-
plices, thus the homology of the complex changes. The functorial property of homol-
ogy and the inclusion map i : V R(D, r1)→ V R(D, r2) whenever r1 ≤ r2, gives rise
to induced maps between the homology of the complexes i∗ : H∗(V R(X, r1);Z2)→
H∗(V R(X, r2);Z2). A nontrivial homology class α ∈ H∗(V R(X, r1);Z2) is said to
be born at radius rb if rb is the least radius value for which H∗(V R(X, rb);Z2)
contains an element mapping onto α under the map

H∗(V R(X, rb);Z2)→ H∗(V R(X, r1);Z2).

The homology class α is said to die at radius value rd provided that rd is the least
radius value for which the class αmaps to zero in the mappingH∗(V R(X, r1);Z2)→
H∗(V R(X, rd);Z2). The topological feature that α represents is then said to have
a birth and death “time” corresponding to the radius values rb and rd. We say
that the class α persists over the interval [rb, rd]. Persistent homology of a data set
D is a cataloguing of the homological classes of the abstract simplicial complexes
V R(D, r) that persist for large intervals of radius values, r.

For a fixed k, the persistence diagram for Hk(V R(X, ∗);Z2) is a plot of points
(rb, rd) for each non-zero class α ∈ Hk(V R(X, ∗);Z2).

Figure 1 contains an example data set that includes several 1-dimensional ho-
mological features of varying size and the corresponding persistence diagrams in
dimensions zero and one.

Within the persistence diagram in Figure 1, we see two lone triangles at the
points p1 = (0.35, 0.8) and p2 = (0.3, 1.55). The point p2, with the early birth time,
is the 1-dimensional homology class representing the larger circular feature on the
right. The earlier birth time is due to the closer scattering of the data points about
the larger circle. The point p1, with the earlier death time, is the 1-dimensional
homology class representing circle of smaller radius on the left. The early death
time is due to the smaller radius of this circular feature. The persistence dia-
gram in Figure 1 also contains several triangles near the diagonal which represent
classes that only persist for a short while, and it includes a triangle at the point
(0.1, 0.15) representing the 1-dimensional homology class resulting from the tiny
circle of points at the top of the larger circle. Notice that the 0-dimensional homol-
ogy classes, which are plotted as small circles in the persistence diagram, all have
birth time r = 0 as a result of each data point representing a unique 0-dimensional
class at r = 0. As r increases, the complex consists of fewer connected components
until it is one connected component. The 0-dimensional persistence class plotted
at the point (0, 0.35) represents the joining of the last two components into a single
component. In other words, for r ≥ 0.35 the simplicial complex V R(X, r) is one
connected component. The 0-dimensional class plotted at (0, 2) is merely the result
of using a maximum radius value of r = 2 in the persistent homology calculation.
This class indicates that the complex V R(X, 2) is one connected component.

The discussion above defines a persistence diagram for a data set using the
Veitoris-Rips Complex. There are, however, several other routes that lead to the
creation of a persistence diagram. The omnibus test described below can be applied
to a collection of persistence diagrams obtained by any means.
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Figure 1. An Example Data set and the corresponding persis-
tence diagrams for the homological dimensions 0 and 1.

2.3. A Metric on Persistence Diagrams. We follow Robinson and Turner in
selecting the metric on persistence diagrams that is analogous to the L2 norm in the
space of functions on a discrete space. Given two persistence diagrams X and Y , let
x1, x2, . . . , xn ∈ X be a listing of the off-diagonal points of X and y1, y2, . . . , ym ∈ Y
be the off-diagonal points of Y . Select points xn+1, . . . , xn+m and ym+1, . . . , ym+n

along the diagonal so that xn+k is the point closest (in Euclidean distance) to yk
and vise versa. Let X ′ = {x1, . . . , xn+m} and Y ′ = {y1, . . . , yn+m}. We consider
the set of all bijections φ : X ′ → Y ′ such that (1) the off-diagonal point xk is paired
either with an off diagonal point of Y or with ym+k and (2) the diagonal point xl
is paired either with yl−n or with one of the diagonal points in Y ′. For a specific
bijection φ, if both xk and yj are diagonal points the cost of assigning xk to yj ,
denoted C(xk, yj), is 0, else the cost is the Euclidean distance between xk and yj .

Define d(X,Y ), the distance between the persistence diagrams X and Y , by

d(X,Y ) =

(
inf

φ:X′→Y ′
Σx∈X′C(x, φ(x))

) 1
2

.

A bijection between X and Y is called optimal if it achieves the infimum.
The Hungarian Algorithm[7, 10], also known as Munkres’ assignment algorithm,
presents a method for obtaining an optimal bijection in polynomial time. Figure 2
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gives an example of two simple persistent diagrams and the bijection exhibiting
their diagram distance.
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Figure 2. On the left, two superimposed persistence diagrams
of the same homological dimension. On the right, the points
{x1, . . . , x5}, {y1, . . . , y5} and line segments indicating the opti-
mal bijection. The diagram distance is the sum of the lengths of
the line segments x1y3 + x2y1 + x3y5 + x5y2. The segment x4y4 is
not included as it is a segment between diagonal points.

3. Hypothesis Testing and Topological Data Analysis

When persistent homology is applied to point clouds obtained from a random
sample of points from various spaces, an element of variability is unavoidably intro-
duced. Point clouds obtained from different samples of the same space, if somewhat
representative, are expected to have “small” differences in their respective persis-
tence diagrams, while point clouds obtained from samples of different spaces are
expected to have comparatively “large” differences in their persistence diagrams.
However, when the true shape-related features of two spaces are unknown, and all
that is available are the point clouds obtained from samples of each of these spaces,
what qualifies as a “small” or “large” difference is unclear. A tool is needed which
can determine whether or not the shapes of the underlying spaces are measurably
different. Statistical hypothesis testing is a method that can be implemented in
these situations to decide if there is sufficient evidence to classify the shapes of the
spaces as measurably different. A thorough development of statistical hypothesis
testing is available in many standard sources [2, 3].

3.1. Hypothesis Testing via the Joint Loss Function. Consider two spaces
in Rm, arbitrarily labeled X1 and X2, suspected of having measurably different
shapes. Suppose n1 point-clouds are available from X1 and n2 point clouds are
available from X2, with their corresponding persistence diagrams in a fixed di-
mension denoted respectively by X1,1, X1,2, . . . , X1,n1

and X2,1, X2,2, . . . , X2,n2
.

Further suppose that each of these n1 + n2 point clouds was obtained via random
sampling from either X1 or X2. Note that in practice, for each space, a single point
cloud will usually be obtained via a random sample of Xi and then partitioned, via
subsampling, into ni “smaller,” or less dense, point clouds. Within the statistical
hypothesis testing paradigm, the null hypothesis asserts that the shapes of X1 and
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X2 are not measurably different, while the alternative hypothesis asserts the op-
posite. The corresponding test statistic, proposed by Robinson and Turner [12], is
the joint loss function

σ2
χ2

=

2∑
m=1

1

2nm(nm − 1)

nm∑
i=1

nm∑
j=1

d(Xm,i, Xm,j)
2,

where d(·, ·) is the persistence diagram distance metric described in Section 2.3.
The joint loss function is ultimately an aggregate measure of within-group vari-

ation. More specifically, σ2
χ2

adds the variation in the
(
n1

2

)
persistence diagram

distances from X1 and the variation in the
(
n2

2

)
persistence diagram distances from

X2. Unfortunately, the sampling distribution of σ2
χ2

is non-trivial to determine
and is currently unknown, which renders the “standard” (i.e. distribution-based)
hypothesis testing paradigm impossible. To circumvent this, Robinson and Turner
propose implementing a permutation test, which in this context is free of any dis-
tributional assumptions. A thorough development of permutation tests, and the
often corresponding approximate permutation test p-values, is available in numer-
ous sources [6, 11].

To perform the permutation test, we assume that the null hypothesis is true, i.e.
X1 and X2 are not measurably different in shape. Such an assumption effectively
means that the observed labeling of the point clouds to either space X1 or X2 is just
one of

(
n1+n2

n1

)
possible assignments, all of which are arbitrary and equally likely.

For each of these possible assignments, the value of σ2
χ2

is then computed. Collec-

tively, these values yield the permutation distribution for σ2
χ2

, which is analogous
to a sampling distribution in the standard hypothesis testing paradigm. Finally,
analogous to a standard hypothesis testing p-value, the permutation test p-value
is obtained by calculating the proportion of values in the permutation distribution
which are less than or equal to the observed value of the joint loss function. In
practice, the number of possible assignments may be unreasonably large, in which
case the above procedure is subtly altered to produce an approximate permutation
test p-value. In particular, rather than using the

(
n1+n2

n1

)
possible assignments of

the n1 +n2 point clouds to the two spaces, numerous (e.g. 1000) randomly selected
permutations (i.e. “shuffles”) of the n1 + n2 point clouds are instead used where
after each “shuffle” the first n1 point clouds are labeled as “belonging” to space X1

and the remaining n2 point clouds are labeled as “belonging” to space X2.
If the null hypothesis of the permutation test is actually false, then we would

expect the permutation test p-value to be “small” since the observed labeling of
point clouds would be the only assignment that did not mix point clouds from
both spaces. When a permutation test p-value is less than the α-level, an a-priori
established threshold (e.g. 0.05), the observed value of σ2

χ2
is considered smaller

than what can reasonably be explained by chance assignment of the point clouds
to spaces X1 and X2. The null hypothesis would then be rejected and X1 and X2

classified as having measurably different shape.
It is important to note that if the point clouds were not obtained via random

sampling of X1 and X2, then a permutation test only allows us to draw conclusions
with respect to the point clouds. For instance, if the permutation test p-value is less
than our threshold, then we can conclude that the shapes of the point clouds from
X1 and X2 are measurably different; however, this conclusion cannot be generalized
to X1 and X2 at large. As limited as such a conclusion may be, it is still informative
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to know that such differences exist among the point clouds, particularly when m > 3
and the corresponding point clouds cannot be visualized.

4. Extending Hypothesis Testing to Three or More Groups

While the methods of Section 3 are useful for determining whether or not two
spaces are measurably different in a particular homological dimension, many prac-
tical applications involve more than two spaces. The Cardiotocography data set
considered in Section 6 is one such example. Given s ≥ 3 spaces, suppose we have
n1 point clouds, obtained via random sampling, from space X1, n2 point clouds
from space X2, . . ., and ns point clouds from space Xs. Analogous to before, note
that in practice, for each space, a single point cloud will usually be obtained via
a random sample of Xi and then partitioned, via subsampling, into ni “smaller,”
or less dense, point clouds. In this section we extend the methods of Section 3 to
obtain a hypothesis testing procedure which can determine whether or not sufficient
evidence of measurable differences in shape exists between the s spaces.

4.1. Hypotheses and Justification. To conduct such an inquiry, we follow through
with the suggestion of Robinson and Turner and use an approach analogous to a
standard one-way ANOVA procedure in which there are potentially two stages of
hypothesis testing. An omnibus (i.e. “global”) test is conducted at the first stage
and if this test produces significant results, a number of post-hoc (i.e. “local”)
tests are performed at the second stage to identify the source(s) of the “global”
significance. A thorough development of the one-way ANOVA procedure is avail-
able in several sources [2, 3, 11]. As with the joint loss function in Section 3, the
sampling distribution of the test statistic corresponding to the omnibus test, which
is presented below in Section 4.2, is nontrivial to determine and currently unknown.
Hence, we again use a permutation test to carry out the omnibus test, which we
will henceforth refer to as the omnibus permutation test. The logic behind and
mechanics of this test are developed below in Section 4.2.

The null hypothesis for the omnibus permutation test asserts that the shapes
of X1, X2, . . . , Xs are not measurably different, while the alternative hypothesis
asserts that the shapes of at least two of the s spaces are measurably different. If
we fail to reject the null hypothesis of this omnibus permutation test, then we are
done. However, if we reject the null hypothesis, then we know that at least two
of the s spaces have shapes that are measurably different, though we do not yet
know which spaces. Hence, up to

(
s
2

)
post-hoc tests are performed, one for each

possible pairing of two of the s spaces. For each post-hoc test, the null hypothesis
asserts that the shapes of the two spaces are not measurably different, while the
alternative hypothesis asserts that the shapes are measurably different. Thus, each
post-hoc test can be conducted via the methods described in Section 3.

Before describing the test statistic and corresponding details for the omnibus
permutation test, note that the primary purpose of the test pertains to manage-
ment of the family-wise type I error rate. A type I error is the general term used
to identify a hypothesis test decision in which the null hypothesis is incorrectly
rejected. For any single hypothesis test, the pre-established α-level is the proba-
bility of making a type I error. When multiple post-hoc tests are performed, the
family-wise type I error rate refers to the probability of incorrectly rejecting at least
one of the corresponding null hypotheses. Many methods exist for bounding the
family-wise type I error rate associated with multiple pairwise post-hoc tests (e.g.
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Bonferroni), but such methods invariably require different and smaller α-levels for
each individual post-hoc test. Hence, an insignificant omnibus permutation test
result prevents the analyst from unnecessarily performing post-hoc tests and need-
lessly managing the family-wise type I error rate. Stated another way, if the null
hypothesis of the omnibus permutation test is true, then all of the null hypotheses
of the various post-hoc tests are also true, and thus do not need to be performed,
which eliminates any need to manage the family-wise type I error rate. However, if
an omnibus permutation test in which the null hypothesis is ultimately true is not
performed, then

(
s
2

)
post-hoc tests are unnecessarily performed and the family-wise

type I error rate must needlessly be managed.

4.2. Omnibus Permutation Test Specifics. Suppose, possibly after subsam-
pling, that n1 point-clouds are available from X1, n2 point clouds from X2, . . . ,
and ns point clouds from Xs, with their corresponding persistence diagrams in a
fixed dimension denoted respectively by X1,1, X1,2, . . . , X1,n1 , X2,1, X2,2, . . . , X2,n2 ,
and Xs,1, Xs,2, . . . , Xs,ns . Analogous to the test statistic for the two-space permu-
tation test presented in Section 3, the test statistic for the omnibus permutation
test, for three or more spaces, is a function of the diagram distances for all

(
n1

2

)
pairings of persistence diagrams from X1, all

(
n2

2

)
pairings of persistence diagrams

from X2, . . ., and all
(
ns

2

)
pairings of persistence diagrams from Xs. In particular,

the omnibus joint loss function is defined as

σ2
χs

=

s∑
m=1

1

2nm(nm − 1)

nm∑
i=1

nm∑
j=1

d(Xm,i, Xm,j)
2,

where d(·, ·) is again the persistence diagram distance metric described in Section
2.3. Analogous to σ2

χ2
, σ2

χs
is ultimately an aggregate measure of variability since

the omnibus joint loss function adds the within-group variation of persistence dia-
gram distances from each of the s spaces. As previously mentioned, the sampling
distribution of σ2

χs
is nontrivial to determine and currently unknown; hence, we

turn to the omnibus permutation test.
The logic behind and the mechanics of this omnibus permutation test are analo-

gous to the two-space permutation test described in Section 3. We assume that the
null hypothesis is true, which effectively means that the observed assignment of the

point clouds to the s spaces is just one of
∏s−1
i=1

(∑s
j=i nj

ni

)
possible assignments, all

of which are arbitrary and equally likely. For each of these possible assignments,
the value of σ2

χs
is then computed. Collectively, these values yield the permuta-

tion distribution for σ2
χs

. Finally, the permutation test p-value is then obtained by
calculating the proportion of values in the permutation distribution which are less
than or equal to the observed value of σ2

χs
. As in the two-space scenario of Section

3, in practice the number of possible assignments may be unreasonably large, in
which case the above procedure is analogously altered to produce an approximate

permutation test p-value. In particular, rather than using the
∏s−1
i=1

(∑s
j=i nj

ni

)
pos-

sible assignments of the n1 + n2 + . . .+ ns point clouds to the s spaces, numerous
(e.g. 1000) randomly selected permutations (i.e. “shuffles”) of the n1+n2+ . . .+ns
point clouds are instead used where after each “shuffle” the first n1 point clouds are
labeled as “belonging” to space X1, the next n2 point clouds are labeled as “belong-
ing” to space X2,..., and the remaining ns point clouds are labeled as “belonging”
to space Xs.
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Analogous to the two-space scenario of Section 3, if the null hypothesis of this
omnibus permutation test is actually false, then we would expect the permutation
test p-value to be “small” since the observed labeling of point clouds would be the
only assignment that did not mix point clouds across the s spaces. The permutation
test p-value is then compared to the α-level (e.g. 0.05). If the permutation test
p-value is smaller than this threshold, then the observed value of σ2

χs
is considered

smaller than what can reasonably be explained by chance assignment of the point
clouds to the s spaces. The null hypothesis would then be rejected and at least two
of the s spaces are declared as having measurably different shape. To then identify
the source(s) of this difference, i.e. to determine which spaces have measurably
different shape, a requisite number of post-hoc tests are conducted via the two-
space methods of Section 3.

5. Simulation Study

To confirm the two-space permutation test introduced by Robinson and Turner
[12] and to validate our proposed generalization for three or more spaces, we con-
ducted a large-scale simulation study. Throughout the study, shape was measured
via one dimensional persistent homology. Three different scenarios were considered
and all three consisted of three spaces (s = 3). For each scenario, a trial consisted
of obtaining 20 point clouds, via random sampling of points, from each of the three
spaces and then calculating the approximate omnibus permutation test p-value.
While the 20 point clouds from a particular space were ultimately drawn inde-
pendently, they can be viewed as 20 disjoint subsamples of one larger, i.e. more
“dense,” point cloud obtained via random sampling of points of the space. All
approximate omnibus permutation test p-values were based on 100,000 randomly
selected permutations of the 60 collective point clouds. In particular, for each per-
mutation, the 60 point clouds were “shuffled” and then labeled such that the first
20 were in the first space, the next 20 were in the second space, and the final 20
were in the third space. In the third and final scenario, each of the three possible
post-hoc tests were additionally performed using the two-space permutation test
described in Section 3. The corresponding approximate two-space permutation test
p-values were based on 100,000 randomly selected permutations of the 40 collective
point clouds. In particular, for each permutation, the 40 point clouds were “shuf-
fled” and then labeled such that the first 20 were in the first space and the final 20
were in the second space. A total of 100 trials were performed for each scenario and
the percentage of these 100 trials that produced approximate (omnibus/two-space)
permutation test p-values less than or equal to 0.05 was calculated.

5.1. Unbalanced Unit Circles. For the first scenario, each of the three spaces
was the unit circle; hence, the omnibus permutation test null hypothesis that there
is no measurable difference in shape between the three spaces is ultimately true.
The number of sampled points making up a point cloud from each space, however,
were not equal (i.e. unbalanced). Each point cloud in the “first” space consisted of a
random sample of size 18, whereas each point cloud in the “second” space consisted
of a random sample of size 36 and each point cloud in the “third” space consisted
of a random sample of size 54. For all three spaces, samples were obtained without
allowing for measurement error; i.e. all sampled points lie on their respective unit
circle. Counter-intuitively, 100% of the 100 trials performed produced approximate
omnibus permutation test p-values less than or equal to 0.05. In fact, 100% of
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the trials produced approximate omnibus permutation test p-values less than 0.01.
Thus, in every trial the null hypothesis would be rejected at the 5% level and we
would conclude that the shapes of at least two of the three spaces are measurably
different.

While such results may appear to suggest that the omnibus permutation test is
ineffective, ultimately these results are an expected consequence of allowing differ-
ent (i.e. unbalanced) sample sizes across point clouds. Relative to a point cloud
obtained from a random sample of size 18 from the unit circle, a point cloud ob-
tained from a random sample of size 54 is likely to produce a persistence diagram
(corresponding to homology dimension one) containing a point that is measurably
further from the diagonal. This point in the persistence diagram is expected as
the circular feature within the point cloud will be ”born” sooner and thus persist
for a longer time interval. Hence, in order for the hypothesis testing methods de-
scribed in Sections 3 and 4 to detect truly measurable differences in shape between
the various spaces, every point cloud, both within a space and across spaces, must
consist of the same number of randomly sampled data points. We will henceforth
refer to this procedural necessity as balanced sampling. In practice, balanced sam-
pling will usually be implemented at the subsampling level when the sampled data
points of a space are partitioned, via subsampling, into multiple point clouds; this
is demonstrated using the Cardiotocography data set considered in Section 6.

5.2. Balanced Samples from Circles with Varying Radius. For the second
scenario, each of the three spaces was a circle with a radius of either 1, 1/2 or 1/3
units. Notice that these three spaces are topologically equivalent, though geometri-
cally different, and there is in fact a measurable difference in shape among the three
spaces as measured by persistent homology in dimension one. Hence, the null hy-
pothesis for the corresponding omnibus permutation test is ultimately false. Point
clouds for each of the three circles consisted of random samples of size 24. As in
the Unbalanced Unit Circles scenario, all samples were obtained without allowing
for measurement error; i.e. all sampled points lie on their respective circle. Of the
100 trials performed, 100% of them produced approximate omnibus permutation
test p-values less than or equal to 0.05. In fact, as in the Unbalanced Unit Cir-
cles scenario, 100% of the trials produced approximate omnibus permutation test
p-values less than 0.01. Hence, in every trial the null hypothesis would be rejected
at the 5% level and we would conclude that the shapes of at least two of the three
spaces are measurably different.

As the three spaces of this second scenario are all topologically equivalent, these
results suggest that the omnibus permutation test is capable of recognizing when
purely geometrical differences exist between the spaces. Stated another way, this
second scenario suggests that the hypothesis testing methods described in Sections
3 and 4 are not scale invariant. This is not a surprising result. More specifically, as
seen in the example data of Figure 1, a point cloud obtained from a sample of points
from the circle with radius 1/3 will result in birth and death times for comparatively
smaller radii values than a point cloud obtained from a sample of points from the
unit circle. This is an artifact of the distances between neighboring points in the
point cloud from the circle with radius 1/3 typically being smaller than those from
the unit circle. While in practice it will usually be difficult to determine whether
a significant hypothesis test is a result of topological or geometrical differences
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between the various spaces, it is informative none the less to find evidence of any
measurable difference in shape.

5.3. Balanced Wedges. The third and final scenario consisted of three distinct,
but related cases in which only balanced sample sizes were considered. In the first
case, the three spaces were the unit circle, the two-wedge consisting of two unit
circles, and the three-wedge consisting of three unit circles. Hence, in this first
case, the radii of all component circles are one. An image of these three spaces is
given in Figure 3. In the second case, the three spaces are the unit circle consisting
of one one-unit circle, the two-wedge consisting of two one-half unit circles, and
the three wedge consisting of three one-third unit circles. Hence, in this second
case, the radii of the component circles within a space sum to one. An image of
these three spaces is given in Figure 4. In the third and final case, the three spaces
are the unit circle, the unit circle with a single chord traversing the interior of the
circle, and the unit circle with two non-intersecting chords traversing the interior of
the circle. Hence, in this third case, the area of each of the three spaces is π units.
An image of these three spaces is given in Figure 5. Observe that across these three
scenarios the representations of the three spaces are topologically equivalent, but
geometrically different. We consider all three scenarios since persistence diagrams
are unavoidably influenced by such differences.

Figure 3. Illustrations of the three spaces of case one within the
Balanced Wedges simulation scenario. On the left is the unit circle,
in the middle is the wedge of two unit circles, and on the right is
the wedge of three unit circles.

Figure 4. Illustrations of the three spaces of case two of the Bal-
anced Wedges simulation scenario. On the left is the unit circle, in
the middle is the wedge of two radius 1/2 circles, and on the right
is the wedge of three radius 1/3 circles.

Within each of the three cases, the null hypothesis of the omnibus permutation
test is ultimately false. In other words, there are measurable differences in shape
between the three spaces. The point clouds for each of the three spaces, in all three
cases, were obtained from random samples of the same size (i.e. balanced samples).
Ten different sample sizes were considered: 6, 12, 18, 24, 30, 36, 42, 48, 54, and 60.
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Figure 5. Illustrations of the three spaces of case three of the
Balanced Wedges simulation scenario. On the left is the unit circle,
in the middle is the unit circle with a single chord, and on the right
is the unit circle with two non-intersecting chords.

Figure 6. Illustrations of point clouds obtained from random
samples of each of the three spaces of case two of the Balanced
Wedges simulation scenario. The first row contains point clouds
obtained from random samples of size 12. The second row contains
point clouds obtained from random samples of size 60.

Figure 6 provides examples of point clouds obtained from random samples of size
12 and 60, respectively, from each of the three spaces for case two.

For each of these ten sample sizes, three distinct measurement errors were con-
sidered: 0 (i.e. no error), 1/3, and 2/3 units. For example, in the two-wedge of
case one, measurement error was incorporated in the following manner. A random
sample of points was obtained separately from each of the two unit circles of the
two-wedge. Each point on either circle was obtained by randomly selecting the an-
gle of the point from a Uniform(0,2π) distribution. Each point was then assigned
a radius value of 1 and converted to Cartesian coordinates. Finally, for each point,
two errors were randomly sampled from a Normal(0,σ) distribution, where σ is the
specified measurement error (e.g. 1/3), and respectively added to the Cartesian
coordinates of the point. For each of the three measurement errors, Figure 7 exem-
plifies a point cloud obtained from a sample of size 60 from the two-wedge. From
these images it is clear that as the measurement error increases, the extent to which
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the point cloud resembles the two-wedge dramatically decreases. Measurement er-
ror for the other spaces of case 2, as well as for the other cases of scenario 3, were
analogously incorporated.

No Error Error of 1/3 Error of 2/3

Figure 7. Illustrative point clouds obtained from random samples
of size 60, under various measurement errors, from the two-wedge
of case one of the Balanced Wedges simulation scenario. The mea-
surement error, from left to right, is zero units, one-third units and
two-third units.

For each of the 30 combinations of sample size and measurement error, the
percentage of the 100 trials producing an approximate omnibus permutation test
p-value less than or equal to 0.05 for case one are given in Table 1. Two trends
are readily apparent from these results. First, as sample size increases for a fixed
measurement error, the percentage of significant omnibus permutation test results
almost uniformly increases. This is intuitive and desirable since we would expect
measurable differences in shape between the three spaces to become more easily
identifiable as sample size increases. Second, as measurement error increases for
a fixed sample size, the percentage of significant omnibus permutation test results
almost uniformly decreases. This too is intuitive and desirable since we would
expect measurable differences in shape between the three spaces to become less
easily identifiable as measurement error increases. Given these trends and the fact
that there are so many entries in the table at or near 100%, these results suggest
that the proposed omnibus permutation test “successfully” identified measurable
differences in shape between at least two of these three spaces. The results for cases
two and three, as depicted in Figures 4 and 5, are analogous to those above for case
one and, therefore, are omitted.

As the omnibus permutation test successfully identified measurable differences
in shape between at least two of the three spaces, in all three cases, each of the
three possible post-hoc tests were then conducted. For each such post-hoc test,
the null hypothesis asserts that there is no measurable difference in shape between
the two spaces, while the alternative hypothesis asserts the opposite. Hence, in all
three tests, for all three cases, the null hypothesis is ultimately false. As the results
across the three cases were ultimately analogous, only the results for case one are
discussed below. In particular, for each of the 30 combinations of sample size and
measurement error, the percentage of the 100 trials producing an approximate post-
hoc test p-value less than or equal to 0.05 are given in Table 2 for the circle versus
the two-wedge, in Table 3 for the circle versus the three-wedge, and in Table 4 for
the two-wedge versus the three-wedge.

The two trends that were apparent in the corresponding omnibus permutation
tests for this simulation scenario are also readily apparent in all three of these post-
hoc tests. Specifically, as sample size increases for a fixed measurement error, the
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Table 1. Balanced Unit Wedges - Results of Omnibus Permuta-
tion Tests. For each combination of sample size and measurement
error, the percentage of approximate omnibus permutation test p-
values (out of 100) yielding a value less than or equal to 0.05 is
given. The three spaces are the unit circle, the two-wedge and the
three-wedge.

Sample Size Noise
0 1

3
2
3

6 6% 9% 1%
12 95% 57% 18%
18 100% 65% 41%
24 100% 96% 41%
30 100% 100% 85%
36 100% 100% 98%
42 100% 100% 100%
48 100% 100% 100%
54 100% 100% 100%
60 100% 100% 100%

Table 2. Balanced Wedges Case One - Results of Unit Circle vs.
Two-Wedge Post-hoc Tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

Sample Size Noise
0 1

3
2
3

6 2% 5% 2%
12 90% 29% 13%
18 99% 40% 15%
24 100% 83% 28%
30 100% 97% 49%
36 100% 100% 64%
42 100% 100% 80%
48 100% 100% 82%
54 100% 100% 92%
60 100% 100% 97%

percentage of significant post-hoc tests tends to increase. Similarly, as measure-
ment error increases for a fixed sample size, the percentage of significant post-hoc
tests tends to decrease. A cell by cell comparison of the percentages among the
three post-hoc tests, however, reveals an additional interesting trend. The per-
centages for the post-hoc test between the circle and the three-wedge are almost
uniformly larger than or equal to the corresponding percentages between the circle
and the two-wedge, which are in turn almost uniformly larger than or equal to the
corresponding percentages between the two-wedge and the three-wedge. This too
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Table 3. Balanced Wedges Case One - Results of Unit Circle vs.
Three-Wedge Post-hoc Tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

Sample Size Noise
0 1

3
2
3

6 2% 5% 1%
12 97% 65% 30%
18 100% 85% 40%
24 100% 100% 53%
30 100% 100% 95%
36 100% 100% 100%
42 100% 100% 100%
48 100% 100% 100%
54 100% 100% 100%
60 100% 100% 100%

Table 4. Balanced Wedges Case One - Results of Two-Wedge vs.
Three-Wedge Post-hoc Tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

Sample Size Noise
0 1

3
2
3

6 0% 1% 1%
12 4% 17% 13%
18 62% 16% 18%
24 86% 33% 14%
30 93% 42% 20%
36 87% 66% 26%
42 95% 67% 43%
48 99% 87% 65%
54 100% 93% 66%
60 100% 98% 84%

is mostly intuitive and desirable since, among the three spaces, the unit circle and
the three wedge are the most different with respect to shape. We are uncertain
why the post-hoc test appears more adept at recognizing measurable differences in
shape between the circle and the two-wedge rather than between the two-wedge
and the three-wedge. Regardless, all three of these trends, when coupled with the
volume of entries in all three tables which are at or near 100%, indicate that the
proposed post-hoc tests “successfully” identified measurable differences in shape
between each of the three possible pairings of these three spaces. Such findings
additionally corroborate the legitimacy of the two-space permutation test.
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5.4. Summary of Findings. In summary, the major findings of the simulation
study are three-fold. First and foremost, these simulations demonstrate that the
proposed omnibus permutation testing procedure “successfully” identified measur-
able differences in shape between at least two of the three spaces. Second, these
simulations confirm that the post-hoc testing component “successfully” identified
measurable differences in shape between any two spaces; such findings corroborate
the legitimacy of the two-space permutation testing procedure. Third and finally,
these simulations reveal that, for any number of spaces, balanced sampling is re-
quired in obtaining the point clouds utilized in the testing procedure.

6. Applications to Real Data Sets

We apply our methods to the Cardiotocography (CTG) data set that is freely
available from the University of California at Irvine Machine Learning Reposi-
tory [8]. The CTG data set includes 23 variables for each of 2126 subjects. We
apply our methods on a focused subset of four quantitative variables, including
fetal heart rate baseline in beats per minute, number of accelerations per second,
number of uterine contractions per second, and number of light decelerations per
second. These four quantitative variables are chosen because they are seemingly
independent, and we want to consider no more than four such variables. The cate-
gorical variable of interest is health status, which has three levels: normal, suspect,
and pathologic. The question of interest is whether or not the four-dimensional
space created by the quantitative variables has a measurably different shape across
the three health status groups. To answer this question, we use the omnibus per-
mutation testing procedure developed in Section 4.1, measuring shape via one di-
mensional persistent homology. Before this procedure can be performed, however,
multiple point clouds from the three health status groups must be obtained via
balanced subsampling of the subjects.

Of the 2126 sampled subjects, 1655 are of normal health status, 295 are of
suspect health status, and 176 are of pathologic health status. Hence, from the
sampled data points we obtain three four-dimensional point clouds, one consisting
of 1655 subjects from the normal health status group, another consisting of 295
subjects from the suspect health status group, and one other consisting of 176
subjects from the pathologic health status group. As our methods require balanced
sampling across multiple point clouds from each of the groups, we partitioned, via
subsampling, each given point cloud into “smaller” four-dimensional point clouds
consisting of 44 subjects each. Consequently, we obtained 37 points clouds from the
normal health status group, 6 point clouds from the suspect health status group,
and 4 point clouds from the pathologic health status group. As neither 1655 nor
295 are divisible by 44, we simply discarded the “leftover” 27 normal health status
subjects and the 31 suspect health status subjects.

The omnibus permutation test was then performed using the persistence dia-
grams corresponding to the 47 subsampled point clouds. The null hypothesis as-
serted that there were no measurable differences in shape between the three spaces
corresponding to the three health status groups. The resulting approximate permu-
tation test p-value of 0.00005 was based on 100,000 randomly sampled permutations
of the 47 point clouds. In particular, for each permutation, the 47 point clouds were
“shuffled” and then labeled such that the first 37 were in the normal health status
group, the next 6 were in the suspect health status group, and the last 4 were in
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the pathologic health status group. Given that the p-value is so small, we reject
the null hypothesis and conclude that there are measurable differences in shape
between at least two of the three spaces.

To determine the source(s) of the difference, we ultimately performed three post-
hoc tests, one for each possible pairing of the three health status groups. For each
such test, the null hypothesis asserted that there were no measurable differences
in shape between the two spaces of the respective health status groups. For the
normal and suspect health status groups, the approximate permutation test p-value
of 0.00009 was based on 100,000 randomly sampled permutations of the 43 point
clouds. In particular, for each permutation, the 43 point clouds were “shuffled”
and then labeled such that the first 37 were in the normal health status group and
the final 6 were in the suspect health status group. For the normal and pathologic
health status groups, the approximate permutation test p-value of 0.0060 was based
on 100,000 randomly sampled permutations of the 41 point clouds. In particular,
for each permutation, the 41 point clouds were “shuffled” and then labeled such
that the first 37 were in the normal health status group and the final 4 were in
the pathologic health status group. Finally, for the suspect and pathologic health
status groups, the approximate permutation test p-value of 0.3012 was based on
100,000 randomly sampled permutations of the 10 point clouds. In particular, for
each permutation, the 10 point clouds were “shuffled” and then labeled such that
the first 6 were in the suspect health status group and the final 4 were in the patho-
logic health status group. Note that while (exact) permutation test p-values could
have straightforwardly been obtained for the post-hoc tests involving normal ver-
sus pathologic (101,270 possible assignments) and suspect versus pathologic (210
possible assignments), such p-values could not have reasonably been obtained for
the post-hoc test involving normal versus suspect (6,096,454 possible assignments)
or for the omnibus test (1.087394 × 1012 possible assignments); therefore, for the
sake of consistency, approximate permutation test p-values were obtained in all
instances. Based on these results, there is significant evidence of measurable differ-
ences in shape between the spaces corresponding to the normal and suspect health
status groups, and between the normal and pathologic health status groups, but
insignificant evidence of such differences between the suspect and pathologic health
status groups.

7. Conclusion

For multiple point clouds obtained from (sub)sampled points of three or more
spaces, we propose using an omnibus permutation test on the corresponding per-
sistence diagrams to determine whether statistically significant evidence exists of
measurable differences in shape between any of the respective spaces. If such dif-
ferences do exist, we then propose using a number of post-hoc (i.e. two-space)
permutation tests to identify the specific pairwise differences. To validate this pro-
posed procedure, we conducted a large-scale simulation study using point clouds
obtained from samples of points from three spaces. Various combinations of spaces,
samples sizes and measurement errors were considered in the simulation study and
for each combination the percentage of p-values below an alpha-level of 0.05 were
provided. The results of the simulation study clearly suggest that the procedure
works, but additionally reveal that the method is neither scale invariant nor insensi-
tive to imbalanced sample sizes across point clouds. Finally, we applied our omnibus
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testing procedure to a Cardiotocography data set and found statistically significant
evidence of measurable differences in shape between the spaces corresponding to
normal, suspect and pathologic health status groups.

While the proposed ombinus testing procedure is applicable in any homological
dimension, the simulation study and CTG application presented in this paper focus
exclusively on homological dimension one. Hence, to validate the effectiveness of
the method in other homological dimensions, and to assess the consistency of the
method across various dimensions, additional simulation studies can be performed.

8. Appendix

For readers that are less familiar with simplicial complexes, homology, and per-
sistence diagrams, we include here examples of each for a small accessible example.
Consider the set, D, of five points in the plane as pictured in Figures 8 and 9. Each
point in D is a 0-simplex, each line segment drawn between points is a 1-simplex,
and each shaded triangle a 2-simplex. As the parameter r increases beyond r = 4
the Vietoris-Rips complex will contain additional 2-simplices, a 3-simplex at r = 4.9,
and eventually a 4-simplex when 2r is equal to the diameter of D. Note that the
abstract simplicial complex V R(D, 4.9) in Figure 9 cannot be geometrically realized
in R2 since it contains pairs of 2-simplices whose intersection is not a face of either
simplex.

Figure 8. Five data points in the plane.
Five Point Data Set
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The complex V R(D, 4), on the left in Figure 9, is labeled with an ordering
assigned to its 0, 1, and 2-simplices: the five 0-simplices, v1, v2, v3, v4, v5; six
1-simplices e1, e2, e3, e4, e5, e6; and one 2-simplex f1.

With respect to this notation, the boundary of a chain is relatively easy to
calculate. For example, δ1(e6 + e1 + e2) = v5 + v3 and δ2(f1) = e2 + e3 + e4. More
precisely, the chain complex of V R(D, 4) is

0 −→ Z2
δ2−→ (Z2)6

δ1−→ (Z2)5
δ0−→ 0,



20 C. CERICOLA, I. JOHNSON, J. KIERS, M. KROCK, J. PURDY, AND J. TORRENCE

Figure 9. Representations of the abstract simplicial complexes
V R(D, 4) and V R(D, 4.9) for a five point data set, D.
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with boundary maps given in matrix form by

δ2 =


0
1
1
1
0
0

 , δ1 =


1 0 0 0 0 1
1 1 0 1 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 0 1 1

 , and δ0 =
[

0 0 0 0 0
]
.

Intuitively, the pth homology group measures equivalence classes of p-cycles of
K that are not “filled” by p + 1-chains. In homological dimension p = 1 for the
complex V R(D, 4), an example of a 1-cycle that is not the boundary of a 2-cycle
is e1 + e2 + e3 + e5 + e6. Hence this 1-cycle is in a non-zero equivalence class
of H1(V R(D, 4);Z2). The 1-cycle e2 + e3 + e4, however, is the boundary of the
2-cycle f1 (this 1-cycle is “filled” by f1), so this 1-cycle is equivalent to zero in
the homology group. Hence, in dimension p = 1, the homology of V R(D, 4) is
measuring the circular hole that is seen in the complex.

To complete the homology calculation for the simplicial complex V R(D, 4), we
see that the kernel of δ0 is (Z2)5 and the rank of δ1 is four. ThusH0(V R(D, 4);Z2) ∼=
Z2. Similarly, the nullity of δ1 is two and the image of δ2 is one dimensional. This
implies that H1(V R(D, 4);Z2) ∼= Z2. The group H2(V R(D, 4);Z2) ∼= 0, since the
kernel of δ2 is zero. Because the complex contains no simplices in higher dimensions,
Hp(V R(D, 4);Z2) = 0 for all p > 2.

The calculation H0(V R(D, 4);Z2) = Z2 measures that V R(D, 4) is a connected
complex. The non-trivial group H1(V R(D, 4);Z2) = Z2 measures the existence of
a one-dimensional cycle that is not the boundary of a 2-simplex, namely e1 + e2 +
e3 + e5 + e6.

For the complex V R(D, 4.9), on the right in Figure 9, the homology groups are
H0(V R(D, 4.9)) = Z2 and Hp(V R(D, 4.9)) = 0 for all p ≥ 1. In this example, the
first homology group disappeared, or died, as r increases from 4 to 4.9 as a result
of the additional 2-simplicies that span the 1-cycle e1 + e2 + e3 + e5 + e6.

The persistence diagrams in Figure 10 display the H0 and H1 persistence dia-
grams for the five point data set D first seen in Figure 8. Note that all points in a
persistence diagram are plotted above the line y = x as a persistent homology class
must be born before it can die.
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Figure 10. A Five Point data set and the corresponding persis-
tence diagrams in the homological dimensions 0 and 1.

In homological dimension 1 (the H1 diagram) the small triangle plotted at the
point (4, 4.9) indicates that the five point data set contains a 1-dimensional homol-
ogy class that is born at radius 4 and dies at radius 4.9. In homological dimension 0
(the H0 diagram) the circles plotted at the points (0, 2.236) and (0, 3.54) represent
the connection of data points by 1-simplices at r = 2.236 and at r = 3.54 resulting
in the “death” of a connected component when it is joined with another connected
component by a 1-simplex. For r > 3.54 the five points are path connected via
1-simplices, thus this connected complex gives rise to a single 0-dimensional persis-
tent homology class. This single class is plotted at (0, 6) as a result of considering
only r-values in the range 0 ≤ r ≤ 6.
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