
An Inquiry-Based Approach to Teaching Undergraduate Students Advanced Molecular Genetics

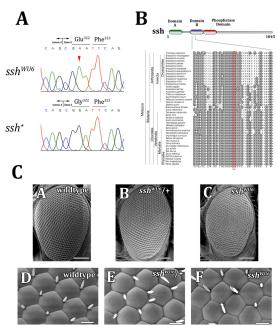
Lauren Hagel¹, Emma Hill¹, Zachary Hutchinson¹, Megan Moore¹, Stephanie Skelly¹, Romain Tropee¹, Jessica Walker¹ Michael Bown², Haylee Chung², Audrey Davis², Melissa Gabler², Morgan Iveson², Saneet Johal², Emma McNeil², Hayley Serres², Victoria Smith², Tyler Starr², Sally Venable², Joshua Wong² and Jason Duncan³

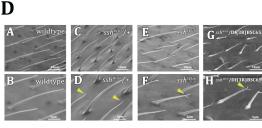
¹Biology 350 Molecular Genetics class of 2010, ²Biology 350 Molecular Genetics class of 2012, ³Department of Biology Willamette University, Salem, OR 97301

Abstract

Research experiences are not only central in training undergraduate students in discipline-specific techniques, but also in fostering the development of science process skills including hypothesis formulation, experimental design, data interpretation, problem solving and scientific writing. I have designed a research-methods course, Biol350 Molecular Genetics that engages students in faculty-mentored research through the identification and characterization of mutant alleles of Drosophila genes required for axonal transport, previously identified in a large-scale mutagenic EMS screen. Employing a unique nested approach that addresses the severe time-restrictions of a short 15-week semester, students simultaneously participated in both a collaborative gene mapping group project and an independent molecular and phenotypic analysis of identified mutations.

In the span of a single semester, seven students were able to map, identify the lesion, and carry out a phenotypic analysis associated with mutant alleles of seven genes including the peroxisome biogenesis factor 1 gene (Pex1****), the ubiquitin specific protease genes fat facets ($fa^{\mu\nu u}$) and non-stop ($not^{\nu u s}$), the transcription factor single-minded ($sim^{\nu u s}$), the cofilin phosphatase gene slingshot ($ssh^{\nu u l}$), the protein O-mannosyltranferase gene rotated abdomen ($rt^{\nu u s}$), and a gene that encodes a pericentrin-like protein, cp309 ($cp309^{\nu u r}$). A summary of the results of the work performed on these mutant alleles will be presented, as will a detailed description of the course and an assessment of the impact it has on the development of science process skills and student attitudes towards research.


Results


Table 1. A summary of the seven mutant alleles identified by $\it Biol350$ $\it Molecular$ $\it Genetics$ class of 2010.

Mutant Allele Gene		Cytology	Function	Lesion
Pex1 ^{WU1}	peroxisome biogenesis factor 1	70D1-70D2	AAA ATPase	TTG → TAG Leu ³²³ to STOP
faf ^{wu2}	fat facets	100D2	ubiquitin-specific protease	$CAG \rightarrow TAG$ Gln^{397} to STOP
not ^{wu3}	non-stop	75D4	ubiquitin-specific protease	CGA → TGA Arg ³⁹ to STOP
sim ^{WU4}	single minded	87D11	transcription factor	n/a
rt ^{wus}	rotated abdomen	68C13	protein O-linked mannosylation	TGG → TGA Trp ⁵⁰⁵ to STOP
ssh ^{wu6}	slingshot	96B10-96B11	protein phosphatase	GGA → GAA Gly ²³³ to Glu ²³³
ср309 ^{wu7}	cp309	71B2-71B4	centrosome protein	n/a

A Biol350 Molecular Genetic students typical characterization of an identified mutation: A Molecular and Phenotypic Characterization of ssh^{wu6}

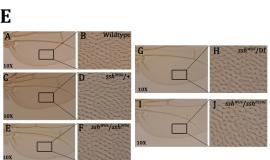


Figure 1. A Molecular and Phenotypic Characterization of ssh^{wu6} The slingshot (ssh) gene encodes a family of phosphatases that dephosphorylate ADF/cofilin, a regulator of actin dynamics. A) The mutant allele, ssh^{wu6} arises as a consequence of a transition mutation that converts Guanine⁶⁹⁸ to Adenine⁶⁹⁸ in exon 5 of the ssh gene, an exon conserved in all four ssh isoforms, ultimately causing a missense mutation that converts the amino acid Glycine²³⁵ (CgA) to Glutamic Acid²³³ (GgA). B) Glycine²³⁵ is an amino acid Glycine²³⁵ (CgA) to Glutamic Acid²³⁶ (GgA). B) Glycine²³⁵ is an amino acid found in a region of the ssh protein called Domain B and is highly conserved across the eumetazoa. Domain B represents the ADF/cofilin binding domain, whereas Domain A represents the F-actin mediated activation domain (Kurita et al., 2008). C) A small percentage of ssh^{wi06} adults are homozygous viable, and exhibit mild disorganization of the ommatidia of the eye. D) ssh mutant adults also exhibit defects in the formation of the wing hairs. Heterozygous ssh^{wi06} adults, the wing hairs she split at their distal tips (Figure D-C and D-D). In viable homozygous ssh^{wi06} adults, the wing hairs are split at their distal tips (Figure D-E, and D-F). E) The ssh gene is required for the maintenance of planar polarity of wing hairs is mildly disrupted in ssh^{wi06} logarity of wing hairs is mildly disrupted in ssh^{wi06} homozygotes (Figure E-F), and more severely disrupted in ssh^{wi06}/Df (Figure E-H) and ssh^{wi06}/Ssh⁹¹²⁰⁷ (Figure E-I) wing blades.

Conclusions

The Classroom Undergraduate Research Experience (CURE) survey, developed by David Lopatto at Grinnell College, was employed as an assessment tool allowing comparison of the perceived gains of students in Biol350 Molecular Genetics to a cohort of students from across the nation who completed similar research courses in the same academic year. Table 2 highlights the perceived gains Biol350 students reported concerning Attitudes About Science, which were all greater than that reported by the national cohort. This measure has been reported to reflect student engagement in the course, and correlate with higher reported learning gains and a greater likelihood of students to declare a science major.

Table 2. CURE Assessment of Biol350 Molecular Genetics - Attitudes About Science

Attitudes About Science - Engagement	Biol350 Students Fall 2010	National Cohort (1107 students)
Even if I forget the facts, I'll still be able to use thinking skills learned in science	4.83	4.71
The process of writing in science is helpful for understanding scientific ideas	4.14	3.93
I get personal satisfaction when I solve a scientific problem by figuring it out myself	4.86	4.18
I can do well in science courses	4.29	3.96
Explaining science ideas to others has helped me understand the ideas better	4.71	4.03
		1 = strongly disagree 5 - strongly agree

In summary, students reported large gains in overall assessment of their experience in *Biol350 Molecular Genetics* compared with other undergraduate research experiences offered nationally (**Table 3**).

Table 3. Summary of CURE Assessment of Biol350 Molecular Genetic

Overall Assessment of Biol350 Molecular Genetics	Biol350 Students Fall 2010	National Cohort (1107 students)
This course was a good way of learning about the subject	4.86	4.17
This course was a good way of learning about the process of scientific research	4.71	4.12
This course had a positive effect on my interest in science	4.86	3.99
I was able to ask questions in this class and get helpful responses	4.86	4.21
		1 = strongly disagree 5 - strongly agree

Acknowledgements

JD would like to acknowledge the Department of Biology at Willamette University for encouraging and supporting the integration of faculty scholarship in the classroom as a way of teaching both the process and content of molecular genetics in an integrated manner.

