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Chapter 1

Fundamental Principles of Statistical
Physics

1.1 Review of Topics in Classical Mechanics

1.1.1 Hamilton’s Equations and Phase Space

Axiom: The state of a system with n degrees of freedom is completely determined by n
coordinates qi(t) and n velocities q̇i(t) (for i = 1, . . . , n)

Lagrangian: The Lagrangian can be written as

L(q, q̇, t)

where

q̇i(t) =
dq(t)

dt
and q(t) = (q1(t), q2(t), . . . , qn(t))

Momenta: Similarly, the momenta pi(t) can be expressed as:

pi(t) =
∂L(q, q̇, t)

∂q̇i

Definition 1: The Hamiltonian or Legendre Transformation of L is given by the function:

H(q, p, t) : =
n∑
i=1

piq̇i − L(q, q̇, t)

Definition 2: The space of 2n-tuplets (q, p) = (q1, q2, . . . , qn, p1, p2, . . . , pn) is called the
phase space of the system, and is denoted by Γ = {(q, p)}.
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8 CHAPTER 1. FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS

Theorem: For every path q(t) in Rn, there is one and only one path q(t), p(t) in Γ. The
path in Γ in determined by Hamilton’s Equations or the Canonical Equations.

q̇i(t) =
∂H(q, p, t)

∂pi

ṗi(t) = −∂H(q, p, t)

∂qi

which are equivalent to the Euler-Lagrange equations:

d

dt

∂L
∂q̇i

=
∂L
∂qi

Proof: See Phys 505

Remark 1: The Euler-Lagrange equations give n 2nd order ODEs, which is equivalent to
the 2n 1st order ODEs given by Hamilton’s equations.

Remark 2: Given an initial point (q0, p0) εΓ with q0 = q(t = 0), p0 = p(t = 0) then this
uniquely determines the path q(t), p(t). Thus paths in phase space can not cross.

The above is NOT physically possible since t = 0 could be chosen to be at the
intersection, which would give two different paths with identical initial points.

Remark 3: Using chain rule:

d

dt
H(q, p, t) =

n∑
i=1

∂H

∂pi
ṗi +

n∑
i=1

∂H

∂qi
q̇i +

∂H

∂t
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Using Hamilton’s equations,

=
n∑
i=1

(q̇iṗi − ṗiq̇i) +
∂H

∂t

=
∂H

∂t

So if the Hamiltonian has no explicit time dependence, then

d

dt
H(q, p) = 0

which is a 1st integral (conservation law). Thus, as H (q0(t), p0(t)) = E which is
constant, energy is conserved or autonomous in the problem.

Example: Let’s look at a 1-d Harmonic Oscillator

n = 1, L = 1
2mq̇

2 − 1
2kq

2, ⇒ p =
∂L
∂q̇

= mq̇

H = pq̇ − L = mq̇2 − 1
2mq̇

2 + 1
2kq

2

= 1
2mq̇

2 + 1
2kq

2

⇒ H(q, p) =
p2

2m
+

1

2
kq2

The phase space orbit in then

E = H(q, p) =
p2

2m
+

1

2
kq2

⇒ p2

2mE
+

q2

2E/k
= 1

The canonical equations are:

q̇ =
∂H

∂p
=

p

m

ṗ = −∂H
∂q

= −kq

⇒ q̈ = − k
m
q = −ω2q

where ω =
√

k
m as per normal.
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Figure 1.1: Phase space diagram of a simple harmonic oscillator with energy E.

1.1.2 Phase Flow

Let

(q(t), p(t)) ≡ z(t) ∈ Γ

= (q1(t), q2(t), . . . , qn(t), p1(t), p2(t), . . . , pn(t))

Definition 1: The set of mapping U : Γ→ Γ,

U(t, t0)z(t0) = z(t)

is called phase flow or time-evolution.

Proposition: The time evolution operator, or propagator, U(t, t0), has the properties:

1. U(t, t) = I ∀ t

2. U(t, t1)U(t1, t0) = U(t, t0) ∀ t, t0, t1
3. U−1(t, t0) = U(t0, t) ∀ t, t0

Proofs:

1.

U(t, t)z(t) = z(t) ∀z(t) ∈ Γ

∴ U(t, t) = I
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2.

U(t, t1)U(t1, t0)z(t0) = U(t, t1)z(t1) = z(t)

= U(t, t0)z(t0)

∴ U(t, t1)U(t1, t0) = U(t, t0)

3.

U(t0, t)z(t) = z(t0)

U−1(t0, t)U(t0, t)z(t) = U−1(t0, t)z(t0)

z(t) = U−1(t0, t)z(t0)

= U(t, t0)z(t0)

∴ U−1(t0, t) = U(t, t0)

Remark 1: Knowledge of the phase flow is equivalent to knowledge of the solution of the
canonical equations.

1.1.3 Liouville’s Theorem

Theorem: Let
dΓ = const · dq1dq2 · · · dqndp1dp2 · · · dpn

be the element of volume in phase space. Then

dΓ = constant

In other words, phase flow is volume preserving.

Proof:

Let q, p = qt, pt represent q, p at time t, and q′, p′ = qt+τ , pt+τ represent values of
q, p at time t+ τ . Then we want to show that∫

dq1dq2 · · · dqndp1dp2 · · · dpn =

∫
dq′1d

′
2 · · · dq′ndp′1dp′2 · · · dp′n
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But ∫
dq′1 · · · dq′ndp′1 · · · dp′n =

∫
J dq1 · · · dqndp1 · · · dpn

where

J =
∂(q′1, . . . , q

′
n, p
′
1, . . . , p

′
n)

∂(q1, . . . , qn, p1, . . . , pn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂q′1
∂q1

· · · ∂q′1
∂qn

∂q′1
∂pn

· · · ∂q′1
∂pn

...
...

∂q′n
∂q1

...

∂p′1
∂q1

...
...

...
∂p′n
∂p1

· · · · · · · · · · · · ∂p′n
∂pn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where J is the Jacobian and is the determinant of the above matrix. Proving Li-
ouville’s Theorem then boils down to showing that J=1. This can be shown using
results from Advanced Dynamics:

1. The change in p, q during motion may be regarded as a canonical trans-
formation.

2. Volume in a phase space is invariant under canonical transformations
(i.e. J = 1 for canonical transformations).

1.1.4 Poincare’s Theorem

Theorem: For full mathematical representation and proof, see “Statistical Mechanics” by
Huang. A system having a finite energy and confined to a finite volume will, after
a sufficiently long time, return to an arbitrarily small neighborhood about almost
any given initial state.

Remark 1: Thus, V returns to U after a finite number of steps. This is called the
Recurrence Theorem.

Remark 2: Recurrence occurs arbitrarily often and arbitrarily accurately (since U is
arbitrary).

Corollary: Let’s consider a conservative mechanical system at some initial time to be
in a state given by a point in phase space, z0 ∈ Γ. Then the system will come
arbitrarily close to z0 again in finite time.
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Figure 1.2: Graphical representation of Poincare’s Theorem. The outer shape is some bounded
region in R2 (for example), V0 is the initial state of the system, U is a neighborhood around V0,
and the lines mark the path of the system through time.

Example: Gas in a partitioned container

So, according to Poincare, at finite t2, all the gas will go back into the single side
of the container!
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Problem: This is NOT what we observe!

Solution:

1. The “finite” time is ridiculously long for large systems.

2. Anything else? Yes! According to Boltzmann, this state would rep-
resent a “fluctuation from equilibrium and is thus still consistent with
statistical description.

1.1.5 Necessity of a Statistical Description of Many Particle Systems

Example 1: Here we’ll look at a free particle in 1 dimension (which is thus not bounded).

p(t) = p0

q(t) = q0 +
(p0

m

)
t

By Liouville’s theorem, the volume in phase space in conserved. But it never
returns to its initial state since the region is not bounded (and thus Poincare does
not hold).

Example 2: Now we’ll look at a particle in a 1 dimensional potential well (so the system
is now bounded).

p(t) = ±p0

q(t) = q0 +
(p0

m

)
t+ inverted motion

As seen in the following figure, notice that p is not continuous, and thus the region
becomes disconnected. Thus we should modify the theory to allow for disconnected
volumes. Also note that, as t → ∞, the disconnected parts become thinner and
thinner, which leads to spaghetti structure.
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Figure 1.3: Spacial and phase space plots for a particle trapped in a potential well.

Example 3: For the final example, we’ll look at a particle scattered by a hard sphere in
3 dimensions.

We know that

sinα =
b

σ
, ∆q1 = ∆q′1, ∆q′2 > ∆q2 = ∆b

So the q contribution to phase space volume increases due to scattering. This means
that, in order to keep the phase space volume invariant, the moment contribution
must decrease. Let

α� 1 ⇒ ∆α =
∆b

σ
=

∆q2

σ
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and let the mean-free path l be

l� σ.

Therefore, the new spacial volume after 1 collision would be:

V ′ = ∆q′1 · l · 2∆α (in 2D)

= ∆q′1 · 2l ·
∆q2

σ

= V · 2l

σ

where V = the initial volume = ∆q1∆q2. In d-dimensions then:

V ′ ∼ V
(

2l

σ

)d−1

Now Louiville’s theorem tells us that the momentum-space contribution to the

phase space volume must decrease by a factor of
(
σ
2l

)(d−1)N
after N collisions.

Problem - “The Butterfly Effect”: After N collisions, a simple volume in phase space
has been transformed into spaghetti in momentum space with typical dimensions
given by

∆pN
pN

∼
( σ

2l

)(d−1)N

Example: Consider a classical gas of hard spheres of radius σ and number density n.

l ∼ (nσ2)−1

⇒ σ

l
∼ nσ3 ≡ n? ← dimensionless density

≈ 10−3 for typical gas

For 3 dimensions and 3 collisions (D = 3, N = 3):

∆pN
pN

∼ (10−3)2·3 = 10−18

So we would have to keep this accuracy to track the particles accurately. Thus, after
a few collisions, a ridiculous level of accuracy is needed to maintain the spaghetti
structure.

Remark 1: Consider a real experiment, where we will be looking at the effect of gravita-
tional attraction between an external butterfly and our system.

F

m
=
GM

r2
= 7× 10−11M

r2
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The momentum uncertainty due to F is:

∆p = Fτ

where τ is the mean free time between particles.

τ =
l

v

⇒ ∆p

p
∼
(
Fτ

mv

)
=

(
F

m

)(τ
v

)
For a classical gas: v = 103 m/s, τ ∼ 10−9 s.

⇒ ∆p

p
∼ 10−22M

r2

• If the butterfly is m = 1 gram and r = 100 m.

∆p

p
∼ 10−22−7 = 10−29

We know spaghetti structure is destroyed after

∆pN
pN

∼
( σ

2l

)(d−1)N

Setting ∆p
p = ∆pN

pN
and solving for N yields:

N = 5

Thus, after only 5 collisions, the butterfly outside will affect the spaghetti
structure of the system inside.

• If instead the butterfly (still m = 1 gram) is on the star Sirius (r = 8.5
light-years or 8× 1016 m):

∆p

p
= 10−22−35 = 10−57

⇒ N = 9 collisions (which takes about 100µs

So again, we are screwed up even by butterflies on Sirius! Now, in order
for the “picture” to reappear in the recurrence relation, the spaghetti
structure must be conserved. Thus, uncontrollable forces in the micro-
scopic world destroy spaghetti structure.

Remark 2: If, instead, we were to consider a computer experiment, we would be free
of outside effects, but would instead introduce uncontrollable perturbations in the
form of rounding errors.

Conclusions:
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1. Microscopically deterministic descriptions of N-particle systems over
macroscopic times (with time reversibility, Poincare’s theorem, etc) are
impossible due to uncontrollable weak forces.

2. In experience, time average of macroscopic quantities are independent
of the instabilities in phase-space structure.

3. We must develop a statistical, rather than deterministic, description of
many particle systems.

Remark 3: According to Boltzmann, the recurrence of states are fluctuations, which are
certain to occur if you wait long enough. Thus, recurrence relations are completely
consistent with a statistical viewpoint.

1.2 Statistical Methods

1.2.1 Probability

Definition 1: Consider a set S 6= ∅ which is the set of all possible outcomes of an experi-
ment. This is called the sample set.

Definition 2: Let E be any subset of S. E is called an event and satisfies:

1. E ⊂ S ∀E
2. ∀E1, E2 ⊂ S, (E1 ∪ E2) ⊂ S ∧ (E1 ∩ E2) ⊂ S

“For events E1 and E2 that are both possible, then E1 or E2 must also
be possible, as well as E1 and E2 being possible.”

3. E ⊂ S, S/E ⊂ S



1.2. STATISTICAL METHODS 19

Definition 3: Each event is assigned a statistical weight or probability P (E) so that:
1. 0 ≤ P (E) ≤ 1 ∀E
2. P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)

3. P (S) = 1, P (∅) = 0

Example: We will consider rolling a fair die:

S = {1, 2, 3, 4, 5, 6}

Any E ⊂ S is an event


E = 1,

E = {1, 3, 5},
etc

P (E) =
(number of elements in E)

6

Proposition: The probability of mutually exclusive events equals the sum of the individual
probabilities.
Proof: If you have mutually exclusive events, then E1 ∩ E2 = ∅. Thus

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)︸ ︷︷ ︸
0

= P (E1) + P (E2)

Definition 4: Let E1 and E2 be events. The joint probability of E1 and E2 is defined as

P (E1, E2) = P (E1 ∩ E2)

Definition 5: If E1 and E2 are statistically independent, then

P (E1, E2) = P (E1)P (E2)

Example: Probability of getting either a 1 or a 6 in rolling 1 die once? The events are
mutually exclusive, so

P (1 ∪ 6) = P (1) + P (6) =
1

6
+

1

6
=

1

3

Example: Probability of getting a 1 and a 6 when rolling 2 die once?

P (1, 6) + P (6, 1) =

(
1

6

)(
1

6

)
+

(
1

6

)(
1

6

)
=

1

18



20 CHAPTER 1. FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS

Also

S = {(1, 1), (1, 2), . . . , (1, 6),

(2, 1), (2, 2), . . .

...

(6, 1), (6, 2), . . . , (6, 6)}

All possible events are equally likely. Odds are 2 out of 36 possible

2

36
=

1

18

Remark 1: It is non-trivial to determine whether events are statistically independent!

Definition 6: A probability distribution is the set of probabilities Pi so that∑
i

Pi = 1

A quantity given by a probability distribution is called a random variable.

1.2.2 Binomial Distribution

Theorem: Let there be S independent attempts, and let the probability of a certain event
in each attempt be p. The probability of an event occurring n times is:

ρb(n, s) =

(
S

n

)
pn(1− p)S−n (?)

where (
S

n

)
=

S!

n!(S − n)!

Proof: The number of ways to partition n events and (S − n) non-events (out of S
total attempts) is (

S

n

)
And so

ρb(n,) =

(
S

n

)
ρ∗(n, S)

where ρ∗ is the probability of realizing a particular partition. The probability for
an event is p; thus the probability for a non-event is (1− p). Thus

ρ∗ = pn(1− p)S−n



1.2. STATISTICAL METHODS 21

Remark 1: ρb is called the binomial distribution.

Remark 2:
S∑
n=0

ρb(n, S) =
S∑
n=0

(
S

n

)
pn(1− p)S−n

Recall from the binomial theorem that

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

Thus

S∑
n=0

ρb(n, S) = (p+ 1− p)S

= 1S

= 1

Remark 3: Looking at an equivalent type problem, consider sites or boxes occupied with
either 0 or 1 indistiguisable objects. Picking S sites, what is the probability of

finding n objects on the S sites, where on average n = m?

ρb(n, S;m) =

(
S

n

)(m
S

)n (
1− m

S

)S−n
=

S!

n!(S − n)!

mn(S −m)S−n

SS

1.2.3 Poisson Distribution

Proposition: A continuum of positions can be occupied by indistinguishable objects. Let
the average number of objects in any sub-region by m. Then the probability of
finding n objects in that sub-region is:

ρp(n;m) =
1

n!
mne−m

This is the Poisson Distribution.
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Example: Consider a Geiger counter subject to constant radio activity. The probability of
n clicks/sec if, on average, there are m clicks/sec, is given by a Poisson distribution.
(Let the number of boxes go to infinity while keeping the density constant.)

Lemma - Stirlings Formula: For n >> 1,

n! =
√

2πnnne−n
[
1 +O( 1

n)
]

This can also be written:

lnn! = n lnn− n+ 1
2 ln(2πn) +O( 1

n)

Proof: See Reif Appendix A6

Proof of Proposition: By §1.2.2.R3,

ρb(n, S;m) =
S!

n!(S − n)!

mn(S −m)S−n

SS

Let S →∞ while keeping n,m fixed. Then

ρp = ρb(n, S →∞;m)

Consider

ln

[
n!ρb
mn

]
= lim

S→∞
ln

[
S!

(S − n)!

(S −m)S−n

SS

]
= lim

S→∞
[lnS!− ln(S − n)! + (S − n) ln(S −m)− S lnS]

= lim
S→∞

[
S lnS − S + 1

2 ln(2πS) +O( 1
S )− (S − n) ln(S − n)

+1
2 ln(2π(S − n)) +O( 1

S−n + (S − n) ln(S −m)− S lnS
]

= lim
S→∞

[
1
2 ln(2π) + 1

2 ln(S)− S lnS − S ln(1− n
S ) + n lnS + n ln(1− n

S )

−n− 1
2 ln(2π)− 1

2 lnS − 1
2 ln(1− n

S ) + S lnS + S ln(1− m
S )

−n lnS − n ln(1− m
S ) +O( 1

S )
]

= lim
S→∞

[
n− n−m+O( 1

S )
]

= −m

⇒ ρp =
1

n!
mne−m

1.2.4 Averages and Fluctuations

Let ρ(n) be a probability distribution for some event to occur n times. Let f(n) be some
function of n.
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Definition 1:

〈f(n)〉ρ : =
∑
n

f(n)ρ(n)

is called the average or mean of f(n).

Remark 1: 〈f(n)〉 is independent of n.

Remark 2: Averages are defined with respect to a particular distribution.

Remark 3: Choose f(n) = nm:

〈nm〉 =
∑
n

nmρ(n)

This is called the mth moment of the distribution of ρ(n).

Remark 4: The zeroth moment is〈
n0
〉

= 〈1〉 =
∑
n

ρ(n) = 1 by normalization

Example: The first moment of ρp(n;m):

〈n〉ρp =
∞∑
n=0

n
1

n!
mne−m

=

∞∑
n=1

1

(n− 1)!
mne−m

=
∞∑
n=0

1

n!
mn+1m−m

= me−m
∞∑
n=0

1

n!
mn

︸ ︷︷ ︸
em

= m

which agrees with the definition of the Poisson distribution! Yay!

Definition 2:

•
〈
(∆n)2

〉
ρ

=
〈
(n− 〈n〉)2

〉
ρ

is called the mean squared deviation, the variance,
or the 2nd moment abouth the mean of the distribution.
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• (∆n) : =
〈
(∆n)2

〉1/2
is called the root mean squared (RMS) deviation or the

standard deviation. Common notation has σ = ∆n and it gives us a measure
of the width of the distribution.

• ∆n
〈n〉 is called the relative fluctuation.

Example: The 2nd moment of ρp(n;m) is:

〈
n2
〉
ρp

=
∞∑
n=0

n2 1

n!
mne−m

= me−m
∞∑
n=0

(n+ 1)

n!
mn

= me−m (mem + em)

= m2 +m

∆n =
〈

(n− 〈n〉)2
〉1/2

ρp
=
(〈
n2
〉
− 〈n〉2

)1/2

=
(
m2 +m−m2

)
= m1/2

Remark 5: For large numbers of events, the size of the expected deviations from the
mean, measured in units from the mean, goes to 0. In other words, the distribution
becomes sharply peaked. This is known as the Law of Large Numbers.

1.2.5 Continuous Distributions

Definition 1: Let x be a continuous random variable, and let ρ(x) be the probability
density that the variable has the value x. Then ρ(x) dx is the probability that the
value will lie in the interval between x and x + dx. Let

∫
ρ(x) dx = 1. Then ρ(x)

is the (continuous) probability distribution function.

Definition 2: Moments, etc are defined by generalizations of §1.2.4.

〈xn〉 =

∫
xnρ(x) dx nth moment

σ ≡ ∆x : =
(〈
x2
〉
− 〈x〉2

)1/2
RMS Deviation

Example: A factory produces resistors with a nominal resisitivity of R. Actual resistivities
will be distributed according to some distribution function ρ(R).
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Remark 1: We can always return to discrete values of the random variable by considering
δ-function distributions.

Example: Suppose x can take on only integer values between 1 and N with equal proba-
bility.

⇒ ρ(x) =
1

N

N∑
n=1

δ(x− n)

is a continuous distribution function describing the above situation.∫
ρ(x) dx = 1

∫
xρ(x) dx =

1

N

N∑
n=1

∫
xδ(x− n) dx

=
1

N

N∑
n=1

n

=
1

N

(
1
2N(N + 1)

)
= 1

2(N + 1)

1.2.6 The Gaussian Distribution and the Central Limit Theorem

Definition 1: Let x be a random variable with distribution

ρG(x) =
1

σ
√

2π
e−x

2/2σ2

Then ρG(x) is called a Gaussian or normal distribution.

Remark 1: 〈x〉 = 0. This can be trivially generalized by making the following substitution

x→ x− 〈x〉
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Remark 2: σ is the standard deviation of ρG:〈
x2
〉

=
1

σ
√

2π

∫
x2e−x

2/2σ2
dx

Scaling x→
√

2σx

=
1

σ
√

2π
2σ2
√

2σ

∫
x2e−x

2
dx︸ ︷︷ ︸

1
2
√
π

= σ2

Lemma: The moments of the Gaussian distribution are:

〈xn〉 =

0 if n = even
n!σn

2n/2(n2 )!
if n = odd

Proof: 〈
x2n+1

〉
= 0 by symmetry

〈
x2n
〉

=
1

σ
√

1π

∫ ∞
−∞

x2ne−x
2/2σ2

dx x→
√

2σx

=
1

σ
√

2π

(√
2σ
)2n+1

2

∫ ∞
0

x2ne−x
2
dx

Now, looking at ∫ ∞
0

x2ne−x
2
dx

recall that

Γ(z) =

∫ ∞
0

tz−1e−t dt

Letting t = x2, we see that

⇒
∫ ∞

0
x2ne−x

2
dx =

∫ ∞
0

1
2 t
n−1e−t dt

=

∫ ∞
0

1
2 t
n+

1
2−1e−t dt

= 1
2Γ
(
n+ 1

2

)
⇒
〈
x2n
〉

=
1

σ
√

2π

(√
2σ
)2n+1

· 2 · 1
2Γ
(
n+ 1

2

)
=

1√
π

(
2σ2
)n

Γ(n+ 1
2)
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Since Γ(z)Γ(z + 1
2) =

√
πΓ(2z)
22z−1

=
(2σ2)n√

π

√
πΓ(2n)

Γ(n)22n−1

=
2nσ2n(2n− 1)!

22n−1(n− 1)!

= 2

(
2

4

)n
σ2n (2n)!

2n

n

n!

=
σ2n(2n)!

2nn!

Definition 2: The characteristic function f(x) of a distribution ρ(x) is defined as:

f(k) =
〈
e−ikx

〉
ρ

=

∫
e−ikxρ(x) dx

(ie. the fourier transform of ρ(x))

Lemma: For a gaussian distribution

f(k) = e−k
2σ2/2, ρ(x) =

∫
1

2π
f(k)eikx dk

(since the fourier transform of a gaussian is a gaussian).
Proof:

f(k) =
〈
e−ikx

〉
ρ

=

∞∑
n=0

〈
(−ikx)n

n!

〉
ρ

=
∞∑
n=0

〈
(−ikx)2n

(2n)!

〉
ρ

=
∞∑
n=0

(−1)nk2n

(2n)!

〈
x2n
〉

=

∞∑
n=0

(−1)nk2n

(2n)!

(2n)!σ2n

2nn!

=
∞∑
n=0

(
−k2σ2

2

)n
n!

= e−k
2σ2/2
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1

2π
f(k)eikx dk =

∫
e−k

2σ2/2eikx
dk

2π

=
1

2π

∫
exp

[
−σ2

2

(
k2 − 2i

σ2
kx− x2

σ4
+
x2

σ4

)]
dk

=
1

2π
e−x

2/2σ2

∫
exp

[
−σ

2

2

(
k − ix

σ2

)2
]
dk

= e−x
2/2σ2

∫
exp

(
−σ

2

2
k

)
dk

2π

= e−k
2/2σ2 1

2π

√
2

σ

∫
e−k

2
dk

=
1√
2π

1

σ
e−k

2/2σ2

= ρ(k)G

Theorem: Central Limit Theorem: Let xi (i = 1, . . . , N) be N independent random
variables with 〈xi〉 = 0 ∀i and

〈
x2
i

〉
< ∞ ∀i. Also let y = 1

N

∑∞
i=1 xi be the

arithmetic mean (ie. the average with respect to a flat distribution) of xi. Then,
for N →∞, y is gaussian distributed with a standard deviation of σ ∼ 1√

N
.

ρ(y) =
1

σ
√

2π
e−i

2/2σ2

with

σ2 =
1

N2

N∑
i=1

〈
x2
i

〉

Remark 3: According to the law of large numbers, for large numbers of events the distri-
bution is sharply peaked about its mean. And the CLT (Central Limit Theorem)
tells us that the distribution in that limit is gaussian.

Remark 4: This holds irrespective of what the distribution of x is, so long as
〈
x2
i

〉
<∞.

Remark 5: Generalizing to 〈xi〉 6= 0:

ρ(y) =
1

σ
√

2π
exp

[
− (y − 〈y〉)2)/2σ2

]
with

σ2 =
1

N2

N∑
i=1

〈
(xi − 〈xi〉)2)

〉
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Simple Proof of Theorem:〈
e−iky

〉
=

〈
exp

(
−ik 1

N

N∑
i=1

xi

)〉

=

〈
N∏
i=1

e−ikxi/N

〉

=
N∏
i=1

〈
e−ikxi/N

〉
since independent xi’s

= exp

[
ln

(
N∏
i=1

〈
e−ikxi/N

〉)]

= exp

[
N∑
i=1

ln
〈
e−ikxi/N

〉]

: = exp

[
N∑
i=1

Ai

(
k

N

)]
where

Ai(p) = ln
〈
e−ipki

〉
Now, for N →∞, we expand:

Ai

(
k

N

)
= ln

〈
1 +

ik

N
xi − 1

2

(
k

N

)2

x2
i

〉

= ln

[
1− 1

2

(
k

N

)2

〈xi〉2 + · · ·

]

=
−k2

2N2

〈
k2
i

〉
+O( 1

N3 )

⇒
〈
e−iky

〉
= exp

[
−

N∑
i=1

k2

2N2
〈xi〉2

[
1 +O( 1

N )
]]

= e−k
2σ2/2

where

σ2 =
1

N2

N∑
i=1

〈
x2
i

〉
By the Lemma then, ρ(y) is gaussian where:

ρ(y) =
σ
√

2π

e−y2/2σ2 with σ2 =
1

N2

N∑
i=1

〈
x2
i

〉
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Finally, let
χ = sup

{〈
x2
i

〉}
Then

σ2 ≤ 1

N2
χN =

χ

N

⇒ σ ∼ 1√
N

Example: By §2.2, we have a binomial situation of S total events with:

ni =

{
1 with probability p

0 with probability (1− p)

⇒ ρ(ni) = pδ(ni − 1) + (1− p)δ(ni)

Consider

n =
S∑
i=1

ni

so that n obeys a binomial distribution. Then

ρ(n) = ρb(n; s) =

(
S

n

)
pN (1− p)S−n

〈ni〉 =
1

S

S∑
i=1

ni = p =
n

S

〈
n2
i

〉
=

1

S

S∑
i=1

n2
i = p since ni = {0, 1} ⇒ n2

i = ni

CLT says (nS ) is gaussian distributed as S gets large:

ρ
(
n
S

)
=

1

σ̃
√

2π
exp

[
−
(
n
S −

〈
n
S

〉)2
2σ̃2

]
where

σ̃2 =
1

S2

S∑
i=1

(〈
n2
i

〉
− 〈ni〉2

)
=

1

S2

(
Sp− Sp2

)
=
p

S
(1− p)

: =
σ

S
⇒ σ2 = p(1− p)
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Changing variables:

ρ
(n
S

)
d
(n
S

)
= ρ(n)dn

⇒ ρ(n) =
1

S
ρ
(n
S

)
=

1

σ̃
√

2πS
exp

[
−(n− 〈n〉)2

2S2σ̃2

]
=

1

σ
√

2πS
exp

[
−(n− 〈n〉)2

2Sσ2

]
Let ˜̃σ =

√
Sσ:

=
1

˜̃σ
√

2π
exp

[
−(n− 〈n〉)2

2˜̃σ2

]
˜̃σ2 = sσ2 = Sp(1− p)

And we see that n is indeed gaussian distributed.

1.3 Review of Thermodynamics

1.3.1 Statistical Description of Large Systems

Problem: From §1.1.5, we saw that for macroscopic systems (∼ 1023 particles), we can
not solve deterministically by solving the equations of motion, even if this were
desirable.

Solution: Distinguish between a system’s microstate, which is classically given by a point
γ ∈ Γ (Quantum mechanically, this is a stationary state given by a many body
wavefunction Ψ(x1, x2, . . . , x1023)) and its macrostate, which is specified by values
of certain macroscopic parameters (ie. energy, temperature, pressure, etc.).

Definition 1:
• For a given energy E, the number of microstates whose energy is ≤ E is denoted

by Ω(E) and is called the integrated density of states or the total number of states.

• The density of states is

ω(E) : =
dΩ(E)

dE

which is the number of microstates per energy interval at a given point in
energy space.

⇒ Ω(E) = ω(E) dE

where Ω(E) depends on the size of dE, but ω(E) is independent of the incre-
ment size.
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• For a system whose energy is constrained to the interval [E − ∆E,E], the
number of microstates with energies in the interval are denoted by Ω∆E(E),
and is called the number of accessible states.

Figure 1.4: Example with Classic Harmonic Oscillator

Remark 1: For macroscopic systems, any reasonable choice of ∆E has Ω(E) ≈ Ω∆E(E)
to tremendous accuracy. Thus it is often unnecessary to distinguish between Ω(E)
and Ω∆E(E).

Remark 2: For large systems (N particles, N � 1), Ω(E) increases exponentially with
N , and for fixed E

N = const, then Ω(E) and ω(E) are rapidly growing functions of
energy.

Remark 3: The goal of a statistical description is to determine probability distributions for
the values of an observable system that is characterized by certain macroscopically
defined conditions.
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1.3.2 The Equilibrium State

Definition 1: A system is isolated if it can not exchange energy with its surroundings
(except for infinitesimal perturbations due to the butterfly effect).

Remark 1: A completely isolated system would, in general, behave very differently from
the realistic “isolated” system above.

Definition 2: A system is in equilibrium if the probability of finding the system in a
particular microstate does not change with time.

Remark 2: In equilibrium, all probability distributions are time independent, and thus
all average values of observables are time independent as well. However, the actual
values still can fluctuate (equilibrium is not a static state).

Postulate of Equal a priori Probabilities: An isolated system in equilibrium is equally
likely to be found in any of its accessible states.

Postulate - An Approach to Equilibrium: An isolated system that is not in equilib-
rium will approach equilibrium if left undisturbed for a sufficiently long time.

Remark 3: The above postulate would be false for truly isolated systems.

1.3.3 Interacting Systems

Two systems that are in contact with one another but isolated from the rest of the world
can exchange energy in the form of heat (Q) and/or work (W ). Thus the energy of each
subsystem is not fixed.

1 2

insulation

Definition 1: The average energy of a system that is a subsystem of a larger isolated
system is called its internal energy, and is denoted by U ≡ 〈E〉.
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Remark 1: If a system absorbs heat Q and does work W , then its internal energy changes
∆U = Q−W . (1st law of thermo)

Remark 2: If the change is infinitesimal, then

dU = δQ− δW

where dU is an exact differential while δQ and δW are not.

Remark 3: ∆U depends only on the systems initial and final states, while Q and W also
depend on the process that takes the system from the initial to final state.

1.3.4 Reversible vs Irreversible Processes

Definition 1:
• A quasi-static process is one that is infinitesimally slow enough so that the

system remains in equilibrium at all times.

• An adiabatic process does not involve heat transfer.

• A reversible process is both quasi-static and adiabatic.

Remark 1: Let Ωi and Ωf be the initial and final number of accessible states in a process.
For processes that are adiabatic and quasi-static, Ωi = Ωf , and are thus reversible.

Remark 2: Let x be an external parameter and let En(x) be the energy of the nth

microstate as a function of x. If x changes quasi-statically, then the sytem does
work:

δW = −
〈
∂En
∂x

〉
dx : = F dx

where

F : = −
〈
∂En
∂x

〉
and is called the generalized force conjugate to x.

Example: If the system volume changes by an amount dV , then work is done:

δW = p dV, with p = −
〈
dE

dV

〉
where p = pressure is the generalized force conjugate to the volume.

Example: The infinitely slow compression of a gas in a thermally insulated cylinder by a
thermally insulated piston is reversible.
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insulation

Gas

Definition 2: An irreversible process is one that increases the number of accessible states
such that Ωf > Ωi.

Remark 3: Ωf > Ωi implies that the final state has a higher probability and thus the
system will not spontaneously return to the initial state.

Example: Humpty Dumpty or the free expansion of a gas into a vacuum are examples of
irreversible processes.

1.3.5 Energy, Temperature, and Entropy

Consider a “small” system (1), and a “large” system (2) that are in thermal contact. Let
their energies be E1 and E2 and the total energy Etot = E1 + E2 and their number of
accessible states are Ω1 and Ω2. Let E1 = E, then the total number of accessible states for

insulation

1 2

the whole system:

Ωtot(E) = Ω1(E)Ω2(Etot − E)
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Remark 1: The total number of states for the whole system is

Ωtot =
∑
E

Ωtot(E)

and the probability distribution for E is

ρ(E) =
Ωtot(E)

Ωtot

Remark 2: Recall from §1.3.1.R2, we expect Ωtot(E) to be sharply peaked about 〈E〉 = U ,
the internal energy of system 1.

Definition 1: A system’s entropy is given by:

S : = kB ln (Ω(E))

where kB = 1.38× 10−23 J
K = Boltzmann’s constant.

Remark 3: For two combined systems, Ω = Ω1Ω2 ⇒ S = S1 + S2, and thun entropy is
additive.

Remark 4: The entropy change for any process that takes an isolated system from one
macrostate to another is positive semi-definite: ∆S ≥ 0, where the equality only
holds if the process is reversible.

Definition 2: The temperature, T , of a system is defined as

1

T
=

∂S

∂E

∣∣∣∣
E=U

= kB
∂(ln Ω)

∂E

∣∣∣∣
E=U

Also, let

β : =
1

kBT

Remark 5: For two systems in equilibrium, the equilibrium state (most probable) occurs
when

Ω1(E)Ω(Etot − E)

is maximized. Which also implies

S1(E) + S2(Etot − E)

is maximized. Taking the derivatives to find the max:

∂

∂E
[S1(E) + S2(Etot − E)] =

∂S1

∂E
− ∂S2

∂E
= 0
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⇒ T1 = T2 in equilibrium

Remark 6: If x is the value of some external parameter, then let Ω(E, x) be the corre-
sponding number af accessible states. Then the generalized force conjugate to x is
given by

F =
1

β

∂ ln Ω

∂x

Remark 7: The relation between temperature, any external parameter, and the general-
ized conjugate forces,

T = T (x, F )

is called the equation of state.

Remark 8: Knowledge of Ω(E, x) or, equivalently, S(E, x) = kB ln Ω(E, x), is sufficient
for calculating all the thermodynamic properties. In particular:

β =
∂ ln Ω

∂E

∣∣∣∣
E=U

;
1

T
=

∂S

∂E

∣∣∣∣
E=U

F =
1

β

∂ ln Ω

∂x

∣∣∣∣
x=〈x〉

= T
∂S

∂x

∣∣∣∣
x=〈x〉

1.3.6 The Laws of Thermodynamics

First Law:

• For an isolated system, U is a constant.

• If a system is brought from one macrostate to another by a process that causes
the system to absorb heat Q and do work W , then the internal energy changes
by ∆U = Q−W .

Remark 1: The first law simply expresses energy conservation.

Second Law:

• For any process that can take an isolated system from one macrostate to an-
other, ∆S ≥ 0.

• A quasi-static process during which a system absorbs an infinitesimal amount
of heat δQ gives an entropy change dS = δQ

T .
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Remark 2: dS is an exact differential, but δQ is not.

Remark 3: The 2nd law has profound technical consequences, which will be covered later
in the semester.

Remark 4: Combining the first and second laws gives

dU = T dS − δW

If the work done is purely mechanical, then δW = p dV

⇒ dU = T dS − p dV

Third Law: S(T → 0)→ 0 (Also called Nerst’s Law)

Remark 5: Dropping the distinction between Ω(E) and Ω∆E(E) is not compatible with
the 3rd law. More generally, entropy can not be defined in a classical context (more
on that later!).

1.3.7 Thermodynamic Potentials

Definition 1: In addition to internal energy, we define:

• Enthalpy: H = U + pV

• Helmholtz Free Energy: F = U − TS

• Gibb’s Free Energy: G = H − TS

Remark 1: These are obtained from Legendre transforms of the 1st law. For example:

dU = T dS − p dV
= T dS − d(pV ) + V dp

d(U + pV ) = T dS + V dp

= dH

Similar transforms give F and G. These give the differentials:

dH = T dS + V dp

dF = S dT − p dV
dG = −S dT + V dp
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Remark 2: These relations imply

T =

(
∂H

∂S

)
p

=

(
∂U

∂S

)
V

p = −
(
∂F

∂V

)
T

= −
(
∂U

∂V

)
S

etc. They also imply Maxwell’s Relations:

⇒
(
∂p

∂T

)
V

=

(
∂S

∂V

)
T(

∂T

∂p

)
S

=

(
∂V

∂S

)
p

Remark 3: The specific heats are given by:

Cv =

(
δQ

dT

)
V

= T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

Cp =

(
δQ

dT

)
p

= T

(
∂S

∂T

)
p

=

(
∂H

∂T

)
p

1.3.8 The Simple Example: The Ideal Gas

A monatomic ideal gas with N particles has equation of state:

PV = nkBT = nRT

It has internal energy

U =
3

2
NkBT

and specific heat / mol:

CV =
3

2
R

Cp =
5

2
R

Note that these are only valid for monatomic gas. Now, a quasi-static change from (Ti, Vi)
to (Tf , Vf ) gives an entropy change of:

∆S = nCV ln

(
Tf
Ti

)
+ nR ln

(
Vf
Vi

)
Remark 1: All of this can be derived from

Ω(E) = V Nχ(E)

where χ(E) is not an explicit function of V .
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1.4 Statistical Ensembles

1.4.1 Gibbsian Ensembles

Consider a system in a particular microstate.

Definition 1: A statistical ensemble consists of many identical systems (same number
of particles governed by the same equations of motion) that are all in the same
macrostate but, in general, in different microstates.

Remark 1: This concept makes averaging easier since we can average over members of
the ensemble at a given time rother than following the time evolution of a syngle
system and averaging over long time periods.

Example: Probability of getting a 6 when rolling 1 die once. You can either roll one die
many times, or roll many identical dice at once.

Remark 2: Need to find the probability of a member of the ensemble to be in a certain
microstate. This depends on the physical situation.

1.4.2 The Microcanonical Ensemble

Consider an isolated system in equilibrium whose microstates have energies

E(p, q) for the classical case, or

En, n = 0, 1, . . . for the quantum mechanical case

Define a macrostate by demanding thath the energy lies in an interval [E −∆E,E].

Theorem: The probability of the system being in the microstate with energy E(p, q) or
En is:

ρ(p, q) =
1∫
dγ
·

{
1 if E −∆E ≤ E(p, q) ≤ E
0 otherwise

(?)

where the integral is taken over the region where E −∆E ≤ E(p, q) ≤ E and

γ ≡ (p, q), dγ = dpdq, Γ = {γ}

ρ(En) =
1∑

1
·

{
1 if E −∆E ≤ En ≤ E
0 otherwise

(?)

Proof: Follows from §1.3.2.P1.

Remark 1: ∫
ρ(p, q) dγ = 1;

∑
n

ρ(En) = 1
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And so our normalization is ok.

Remark 2: This ensemble is called microcanonical and (?) is called the microcanonical
distribution function. It is appropriate for isolated systems.

Remark 3: Microcanonical ensembles lack an obvious temperature concept.

1.4.3 The Canonical Ensemble

Definition 1: A heat bath is a system that is large enough so that any heat that is
absorbed or given off by the heat bath in any thermodynamic process is negligible
compared to its internal energy.

Definition 2: The canonical partition function, Z, is defined quantum mechanically as:

Z =
∑
n

e−βEn

and classically, for a system with N particles and 3N degrees of freedom, as:

Z =
1

~2NN !

∫
e−βE(γ) dγ

Remark 1: The uncertainty relation implies that the phase space can not be partitioned
into cells smaller than ∆p∆q = ~. Thus the factor of ~2N in the classical definition.
We’ll discuss the origin of the N ! later.

Remark 2: A more general definition of the partition function which holds classically and
quantum mechanically is:

Z =

∫ ∞
0

ω(E)e−βE dE

where ω(E) is the density of states.

Theorem: For a system that is in thermal contact with a heat bath, the probability of
being in a microstate with energy En (QM) is:

ρn =
1

Z
e−βEn (??)

or classically:

ρE =
1

~3NN !Z
e−βE (??)
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where β = 1
kBT

and T is the temperature of the heat bath.

Proof (QM only): Let 1 = system and let 2 = heat bath. Thus we have that 1 is
in a state with energy En, and 2 has energy E2. Thus, the combined system has

Etot = En + E2

= constant by 1st law

By §1.3.2.P1, we have that

ρn = (const)Ω2(Etot − En)

⇒ ρn = (const) exp

[
S2(Etot − En)

kB

]
Because of the heat bath, Etot � En, so:

ρn = (const′) exp

−En ∂S2

∂En

∣∣∣∣
Etot

1

kB︸ ︷︷ ︸
β

+ · · ·


= (const′)e−βEn

Normalization implies

(const′) =

(∑
n

e−βEn

)−1

=
1

Z

Remark 3: This is called a canonical ensemble and (??) is a canonical distribution or a
Gibbs-Boltzmann distribution.

Remark 4: The canonical distribution also applies to situations where the system has
been prepared so that its energy is not known precisely but the average energy, U ,
is known. In this case, T is the temperature a heat bath needs to have in order for
the average energy to remain U if the system is brought into contact with the heat
bath.

Remark 5: The energy of a system in contact with a heat bath is not fixed, but is subject
to fluctuations. How big are these fluctuations?

Lemma: In a canonical ensemble, the mean energy and the rms energy fluctuations are
determined by the partition function via the following relationships:

U = 〈E〉 = −∂ lnZ

∂β
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(∆E) =
〈

(E − 〈E〉)2
〉1/2

=

(
∂2 lnZ

∂β2

)1/2

Proof:

Z =
∑
n

e−βEn

Thus

−∂ lnZ

∂β
= − 1

Z

∂Z

∂β

=
1

Z

∑
n

Ene
−βEn

=
∑
n

Enρn

= 〈E〉

And

∂2 lnZ

∂β2
=

∂

∂β

[
− 1

Z

∑
n

Ene
−βEn

]

=
1

Z2

(
∂Z

∂β

)∑
n

Ene
−βEn +

1

Z

∑
n

E2
ne
βEn

= −〈E〉 1

Z

∑
n

Ene
−βEn +

〈
E2
〉

= −〈E〉2 +
〈
E2
〉

= (∆E)

Remark 6: The heat capacity, CV =
(
dU
dT

)
V

:

⇒ CV = −β
T

(
∂U

∂β

)
V

=
β

T
(∆E)2

Remark 7: For a macroscopic system with N particles at temperature T ,

U = O (NkBT )

CV = O (NkB)

Proposition 1: The energy fluctuations in a large system described by a canonical en-
semble are gaussian, and the relative energy fluctuations are:

∆E

〈E〉
= O

(
1√
N

)
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with N equalling the number of particles. So the fluctuations are small, and thus
we need only worry about the averages.
Proof: Consider a large system, and divide it up into n identical subsystems that
are each still macroscopic (and n � 1). Let each subsystem have energy Ei, (i =

1 2 3 ...

... n

1, . . . , n). Thus, the total energy of the system is:

Etot =
n∑
i=1

Ei

Due to fluctuations, Ei are random variables that obey the canonical distribution.
Thus each subsystem has a canonical partition function:

zi =
∑
m

e−βE
(i)
m

where E
(i)
m is the energy of subsystem number i. The subsystems are identical, and

thus zi = z. Thus, the partition function of the whole system can be written:

Z = zn

The canonical distribution has a finite variance, and hence CLT applies. By §1.2.6,
we have:

xi = nEi (i = 1, . . . , n)

y =
1

n

n∑
i=1

xi = E

⇒ ρ(E) =
1

σ
√

2π
exp

[
−(E − 〈E〉)2

2σ2

]
with

σ2 =

n∑
i=1

(〈
E2
i

〉
− 〈Ei〉2

)
= n

〈
(E − 〈E〉)2

〉
= n(∆E)2

By the above Lemma:

σ2 =
n∂2 ln z

∂β2
=
∂2 lnZ

∂β2
= (∆Etot)

2 =
T

β
CV
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⇒ (∆Etot)
2

〈E〉2
=
σ2

U2
=

1

U2

T

β
CV = O

[
T

NkBT

kBT

NkBT
NkB

]
= O

[
1

N

]

Remark 8: A macroscopic system has an extremely sharp gaussian energy distribution.

Proposition 2: In a canonical ensemble, the Helmholtz free energy is given by:

F = −kBT lnZ

Proof: Let x be an external parameter that characterizes the system. Then the
energy level En = En(x).

⇒ Z =
∑
n

e−βEn(x) = Z(β, x)

If we change x, β quasi-statically by dx and dβ respectively, then

d lnZ =
∂ lnZ

∂β
dβ +

∂ lnZ

∂x
dx

= −U dβ +
1

Z

∑
(−β)e−βEn(x)∂E

∂x
dx

= −U dβ − β
〈
∂En
∂x

〉
dx

By §1.3.4.R2:

= −U dβ + β δW

= β δW − d(Uβ) + β dU

= β (δW + dU)− d(Uβ)

= β (δQ)− d(Uβ)

=
1

kBT
T dS − d(Uβ)

⇒ d(lnZ + Uβ) =
1

kB
dS

⇒ S = kB (lnZ + βU) = kB lnZ +
U

T
(up to a constant)

Thus by the definition of F :

F = U − TS
= −kBT lnZ

Remark 9: F , and therefore Z, determine all thermodynamic quantities.
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Corollary 1: Up to a constant,

S = kB lnZ + kBT
∂ lnZ

∂T

Proof: By §1.3.7:

S = −∂F
∂T

= kB lnZ + kBT
∂ lnZ

∂T

Corollary 2::

p = kBT
∂ lnZ

∂V
Proof: Also by §1.3.7:

p = −∂F
∂V

=
∂

∂V
(kBT lnZ) = kBT

∂ lnZ

∂V

1.4.4 The Grand Canonical Ensemble

Consider System ¬ in contact with a heat bath (System ­):

1 2

In this case, due to the perforated boundry, both heat and particles can be exchanged.

Remark 1: The particle number N is not fixed, and so the number of accessible states
depends on both N and F .

⇒ Ω = Ω(E,N)

Definition 1: The chemical potential, µ, of a system is

µ : = − 1

β

∂ ln Ω

∂N

∣∣∣∣E=〈E〉=U
N=〈N〉
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Remark 2: −βµ is related to N as β is related to energy (§1.3.5.R8):

β =
∂ ln Ω

∂E

∣∣∣∣
E=U

, −βµ =
∂ ln Ω

∂N

∣∣∣∣ E=U
N=〈N〉

Remark 3: Many properties of β carry over to µ. In particular, two systems in equilibrium
with one another have the same µ. In addition, a heat bath will have constant µ.

Definition 2: Let E
(N)
n (n = 0, 1, . . .) be the energy levels of ¬ when it contains N parti-

cles. The grand canonical partition function is defined as

Z =

∞∑
N=0

eβµN
∞∑
n=0

e−βE
(N)
n

Remark 4: Here we restrict ourselves to quantum mechanics.

Theorem: The probability of system ¬ being in a macrostate with N particles and energy

E
(N)
n is

ρ(N)
n =

1

Z
exp

[
−β
(
E(N)
n − µN

)]
Proof: Generalizing §1.4.3, we have that

E(N)
n + E2 = Etot

N +N2 = Ntot

S2(E2, N2) = kB ln Ω2

(
Etot − E(N)

n , Ntot −N
)

≈ kB ln Ω2 (Etot, Ntot)− kBE(N)
n

∂ ln Ω2

∂E

∣∣∣∣Etot
Ntot

− kbN
∂ ln Ω2

∂N

∣∣∣∣Etot
Ntot

= C − kBβE(N)
n + kBNβµ

⇒ ρ(N)
n ∼ Ω2 = eS2/kB = C′e−βE

(N)
n eβµN

where C in an constant. Normalizing, we find that

C′ = 1

Z
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Lemma: In a grand canonical ensemble, the thermodynamic potentials U,H, F,G obey
the relations:

dU = T dS − p dV + µdN, U(S, V,N)

dH = T dS + V dp+ µdN, H(S, p,N)

dF = −S dT − p dV + µdN, F (T, V,N)

dG = −S dT + V dp+ µdN, G(T, p,N)

Proof: Recall that

µ = −kBT
∂ ln Ω

∂N

∣∣∣∣ E=U
N=〈N〉

µ = −T
(
∂S

∂N

)
U,V

But then

dS =

(
∂S

∂E

)
V,N

∣∣∣∣∣
E=U

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN

=
1

T
dU +

p

T
dV − µ

T
dN

⇒ dU = T dS − p dV + µdN

Performing Legendre transformations, it follows that:

H = U + PV ⇒ dH = T dS + V dp+ µdN

F = U − TS ⇒ dF = −S dT − p dV + µdN

G = F + pV ⇒ dG = −S dT + V dp+ µdN

Remark 5: µ is the energy change that results from adding one particle to the system
adiabatically (dS = 0) and isochorically (dV = 0).

Lemma 2: The Duham-Gibbs Relation:

G = Nµ

Proof: By Lemma 1:

G = G(T, p,N)

We expect G to be proportional to N , and so we let

G(T, p,N) = Ng(T, p) (?)
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Now, again by Lemma 1:

µ =

(
∂G

∂N

)
T,p

= g(T, p) =
G

N

⇒ G = µN

Remark 6: It is not obvious that (?) holds. See §1.4.5 for a discussion and derivation of
(?).

Proposition 1: In a grand canonical ensemble:

J : = −kBT lnZ

defines a thermodynamic potential whose differential is

dJ = −S dT − p dV −N dµ

which is also equal to
J = −pV

This is called the grand potential.

Proof: Perform a Legendre transformation from F = F (T, V,N) to J = F − µN =
J(T, V, µ).

⇒ dJ = dF − µdN −N dµ

= −S dT − p dV −N dµ

From Lemma 2 (G = µN):

⇒ J = F − µN = F −G = F − (F + pV ) = −pV

We must still show that:
J = −kBT lnZ

Now

ρ(N)
n =

1

Z
exp

[
−βE(N)

n + βµN
]

∼ Ω2

(
Etot − E(N)

n , Ntot −N
)

∼ Ωtot

Ω1(E
(N)
n , N

⇒ ln ρ(N)
n = C + ln Ωtot − ln Ω1

(
E(N)
n , N

)
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⇒ S = kB

〈
ln Ω1

(
E(N)
n , N

)〉
= −

〈
ln ρ(N)

n

〉
up to a const

= kb lnZ + kBβ
〈
E(N)
n

〉
− kBβµ 〈N〉

Multiplying everything by (−T ) yields

−kBT lnZ = TS + U − µ 〈N〉
= F − µ 〈N〉
= J

Proposition 2: In a grand canonical ensemble, the mean particle number is given by

〈N〉 = kBT
∂ lnZ

∂µ

Z =
∑
N

eβµN
∑
n

e−βE
(N)
n

Proof: See HW.

1.4.5 The Thermodynamic Limit and the Durham-Gibbs Relation

Consider a macroscopic system, V = O(1 cm3, N = O(1020), which is huge compared to

its microscopic dimensions of N ∼ O(1), V ∼ O
(

1Å
3
)

. Recall that the free energy is

F = F (T, V,N).

Definition 1: The limit as V →∞ and N →∞ so that n = N
V = C and f = F

V = C <∞
is called the thermodynamic limit.

Remark 1: For practical purposes, macroscopic systems are in the thermodynamic limit.

Definition 2:
• Consider a function of n variables, f(x1, . . . , xn). It is a homogeneous function of degree a

if the number a ∈ R exists so that

f(bx1, . . . , bxn) = baf(x1, . . . , xn) ∀b > 0

• f is a generalized homogeneous function if n+1 numbers [x1], [x2], . . . , [xn], [f ]
(not all zero) exist so that for all b > 0

f(b[x1]x1, b
[x2]x2, . . . , b

[xn]xn) = b[f ]f(x1, x2, . . . , xn)

Examples:
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1. If we have the case where n = 1, f(x) = cxa

⇒ f(bx) = c(bx)a = bacxa = baf(x)

⇒ homogeneous function of degree a

If instead we had n = 1, f(x) = ln(x):

⇒ f(bx) = ln (bx) = ln b lnx

⇒ Not homogeneous

2. Now consider when n = 2, f(x, y) = x3 + xy + y3/2. Let’s choose [x] =
1, [y] = 2.

⇒ f(b[x]x, b[y]y) = f(bx, b2y)

= (bx)3 + (bx)(b2y) = (b2y)3/2

= b3
(
x3 + xy + y3/2

)
= b3f(x, y)

⇒ f(x, y) is a generalized homogeneous function with [f ] = 3.

What is we hadn’t known what [x] and [y] were?

x3b3[x] + b[x]+[y]xy + b3[y]/2y3/2 = b[f ](x3 + xy + y3/2)

⇒ [x] + [y] = 3[x] =
3

2
[y] = [f ]

So we basically have 3 equations, 3 unknowns. The solution will be unique up
to a redefinition of b. As a counter example, consider:

n = 2 : f(x, y) = x3 + ey is not a generalized homogeneous function

Consider now a d-dimensional system in the thermodynamic limit, and change all linear
dimensions by a factor of b > 0.

L→ L′ =
L

b

V → V ′ = b−dV

Remark 2: Under this transformation, in order for n = N
V to remain constant, we must

have

N → N ′ = b−dN
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Remark 3: If the system is in contact with a heat bath, where the system is huge in
comparison to the microscopic limit, and the heat bath is huge in comparison to
the system, then T does not change upon changing volume.

T → T ′ = b0T

Lemma: The Helmholtz free energy is a generalized homogeneous function of T, V,N ,
namely:

F (T, V,N) = bdF
(
T, V b−d, Nb−d

)
Proof: By Definition 1:

F (T ′, V ′, N ′

V ′
= f(T ′, V ′, N ′)

= f (T, V,N) in the thermodynamic limit

=
F (T, V,N)

V

⇒ F (T, V,N) =
V

V ′
F
(
T ′, V ′, N ′

)
= bdF

(
T, b−dV, b−dN

)

Remark 4: [f ] = −d, [V ] = −d, [N ] = −d, [T ] = 0 are called scale dimensions of
F, V,N, T respectively.

Remark 5: Let A and B have scale dimensions of [A] and [B]. Then [AB] = [A] + [B].

Lemma 2: There exists a function F̃ (x, y) such that

F (T, V,N) = NF̃

(
T,
V

N

)
Proof: The value of b in Lemma 1 is arbitrary so long as it remains positive. Thus,
lets let b = N1/d.

⇒ F (T, V,N) = NF (T,N−1V, 1)

Define F (x, y, 1) : = F̃ (x, y).

⇒ F (T, V,N) = NF̃

(
T,
V

N

)
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Lemma 3:

N

(
∂F

∂N

)
V,T

+ V

(
∂F

∂V

)
N,T

= F

Proof: By Lemma 2:(
∂F

∂N

)
V,T

= F̃

(
T,
V

N

)
+N

(
−V
N2

)
∂F̃ (x, y)

∂y

∣∣∣∣∣ x=T
y=V/N

= F̃

(
T,
V

N

)
− V

N

(
∂F̃ (x = T, y = V/N)

∂y

)

Since (
∂F

∂N

)
V,T

= N
1

N

∂F̃

∂y

⇒ N

(
∂F

∂N

)
V,T

+ V

(
∂F

∂V

)
N,T

= NF̃

(
T,
V

N

)
= F (T, V,N)

Theorem: Again, G = µN by the Duham-Gibbs Relation.

Proof: By §4.4.L1 ⇒ dF = −S dT − p dV + µdN .

⇒ p = −
(
∂F

∂V

)
T,N

, µ =

(
∂F

∂N

)
T,V

Now

G = F + pV

= F −
(
∂F

∂V

)
T,N

V

= N

(
∂F

∂N

)
T,V

+ V

(
∂F

∂V

)
T,N

− V
(
∂F

∂V

)
T,N

by above L3

= N

(
∂F

∂N

)
T,V

= µN

Remark 6: The above proof did not use §4.4(?). (G(T, p,N) = Ng(T, p))

Remark 7: §4.4(?) can be obtained as follows:

[F ] = [V ] = −d
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⇒ [p] =

[
∂F

∂V

]
=

[
F

V

]
= [F ]− [V ] = 0

⇒ G(T, p,N) = −b−[G]G
(
Tb[T ], pb[p], Nb[N ]

)
= bdG(T, p,Nb−d)

Let b = N1/d:

⇒ G(T, p,N) = NG(T, p, 1) : = Ng(T, p)

where g(x, y) : = G(x, y, 1). Thus the proof of the Duham-Gibbs relation in §4.4
was indeed true, just not obvious.

1.4.6 Systems in Magnetic Fields

In general, work is not purely mechanical for systems in magnetic fields.

Lemma: A magnetization change dM by a magnetic field requires work δW = B · dM .

Proof: We want to magnetize the system by letting it approach the bar magnet
from x = −∞. Let the field be axi-symmetric along the x-axis and B(x→∞)→ 0.

System

B
a
r 

M
a
g
n
e
t

Also let the final position by x = a. The attractive force at point x is:

F = M(x)
dB

dx

To do this process quasi-statically, we need a balancing force Fbalance = −F . So we
want to apply force:

Fbalance(x) = −M(x)
dB

dx
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which does work

W1 = −
∫ a

−∞
M(x)

dB

dx
dx

= −M(a)B(a) +

∫ a

−∞

dM

dx
B(x) dx (int by parts)

= −M(a)B(a) +

∫ M(a)

0
B(x) dM

To find the work it takes to magnetize the system in the absence of any other
changes, we now take the system back to x = −∞ while keeping magnetization
fixed at a value M(a). This requires work.

W2 = −
∫ −∞
a

M(a)
dB

dx
dx

= −M(a) [0−B(a)]

= M(a)B(a)

So the total required work to magnetize the system is:

W = W1 +W2 =

∫ M(a)

0
B(M) dM

For an infinitesimal magnetization then, the amount of work done on the system is

δW = B · dM

Proposition: For a magnetizable system in a magnetic field, the free energy obeys

dF = −S dT − p dV −B · dM + µdN

Proof: dU = δQ− δW = T dS−B ·dM for purely magnetic work. The rest follows
as before.

Remark 1: By means of a Legendre transformation, F̃ = F +B ·M , one can switch from
F = F (T, V,M,N) to F̃ = F̃ (T, V,B,N). Similar things can be done for the other
thermodynamic potentials.

1.5 Quantum Statistical Mechanics

1.5.1 The Postulates of Quantum Statistical Mechanics

Let a system at time t be in a quantum state |ψ(t)〉. Expand this state in a complete set
of orthonormal functions {|ϕn〉}.

|ψ(t)〉 =
∑
n

Cn(t) |ϕn〉 , Cn(t) ∈ C
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Remark 1: |Cn(t)|2 is the probability for a system to be in state |ϕn〉 at time t.

Remark 2: The time evolution of |ψ(t)〉 is determined by Schrodinger’s equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉

with Ĥ representing the systems Hamiltonian operator, and we assume Ĥ to be
time-independent. A deterministic system would imply that if you know state
|ψ(0)〉, then you know the system’s state at all future times.

Remark 3:
〈ϕm|ψ(t)〉 =

∑
n

Cn 〈ϕm|ϕn〉 = Cm(t)

⇒ i~ Ċn(t) =

〈
ϕn

∣∣∣∣i~ ∂∂tψ(t)

〉
=
〈
ϕn

∣∣∣Ĥ∣∣∣ψ(t)
〉

=
∑
m

Cm(t)
〈
ϕn

∣∣∣Ĥ∣∣∣ϕm〉
: =
∑
m

HnmCm(t)

where Hnm are the matrix elements of the Hamiltonian.

⇒ Ċn(t) =
i

~
∑
m

HnmCn(t)

Ċ∗n =
i

~
∑
m

H∗nmC
∗
m(t)

=
i

~
∑
m

HmnC
∗
m(t)

Here 〈ϕ|ψ〉 is a scalar product in Hilbert space and we have used the fact that Ĥ
is hermitian.

Ĥ† = Ĥ ⇒ H∗nm = Hmn

Let Â be an operator in Hilbert space that corresponds to some observable A. From Phys
515/516, we know thath the expectation of Â in a state ψ(t) is given by:〈

Â
〉

=
〈
ψ(t)

∣∣∣Â∣∣∣ψ(t)
〉

=
∑
nm

C∗n(t)Cm(t)
〈
ϕn

∣∣∣Â∣∣∣ϕm〉
=
∑
nm

C∗n(t)Cm(t)Anm
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Remark 4: The normalization of |ψ(t)〉 implies that∑
n

|Cn(t)|2 = 1

Remark 5:
〈
Â
〉

is the average value obtained for the observable, taken from a large

number of simultaneous measurements on equally prepared systems.

Remark 6: Quantum Mechanics implies an averaging concept even in the absence of
statistical mechanics considerations.

Remark 7: Due to the butterfly effect, we are never quite sure which state the system is
in, and therefore we need an ensemble average. Thus the ensemble averaged values

of
〈
Â
〉

(which is now a random variable due to butterflies) is:

〈A〉 =
∑
nm

〈C∗n(t)Cm(t)〉Anm

For a deterministic quantum mechanical system, |ψ(t)〉 describes a system for all time given
|ψ(0)〉. For example, let |ψ(0)〉 = |ϕ1〉+ 2 |ϕ2〉:

⇒ C1(t = 0) = 1

C2(t = 0) = 2

In 2 dimensional Hilbert space:

The butterfly effect means we are not exactly sure what the state of |ψ(0)〉 is.

⇒ Ĥtotal = Ĥsystem + Ĥsystem+butterflies
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Definition 1: The density matrix or statistical operator of the system is defined as the
operator ρ̂ whose matrix elements are

ρnm(t) = 〈ϕn|ρ̂|ϕm〉 : = 〈Cm(t)C∗n(t)〉

Remark 8: As in §4.1, the average above can be considered either as a time average for
one system, or as an ensemble average at a given time.

Proposition 1: Let ρ̂ be the statistical operator of some system. Let Â be an operator that

corresponds to observable A. Then the ensemble average
〈
Â
〉

of the expectation

value A of Â is given by:

〈A〉 = tr
(
ρ̂Â
)

Proof:

tr
(
ρ̂Â
)

=
∑
n

〈
ϕn

∣∣∣ρ̂Â∣∣∣ϕn〉
=
∑
n

∑
m

〈ϕn|ρ̂|ϕm〉
〈
ϕm

∣∣∣Â∣∣∣ϕn〉
=
∑
nm

ρnmAmn

=
∑
nm

〈Cm(t)C∗n(t)〉Amn

=
∑
nm

〈Cn(t)C∗m(t)〉Anm

= 〈A〉

Proposition 2: The statistical operator obeys the Liouville - von Neumann equation:

i~∂tρ̂(t) =
[
Ĥ, ρ̂(t)

]
Proof:

i~∂tρnm = i~
(〈
Ċn(t)C∗m(t) + Cn(t)Ċ∗m(t)

〉)
=
∑
s

(Hns 〈Cs(t)C∗m(t)〉 −Hsm 〈Cn(t)C∗m(t)〉)

=
∑
s

(Hnsρsm − ρnsHsm)

=
(
Ĥρ̂
)
nm
−
(
ρ̂Ĥ
)
nm

=
[
Ĥ, ρ̂

]
nm
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Corollary 1: For a system in equilibrium, the density matrix commutes with the Hamil-

tonian,
[
Ĥ, ρ̂

]
= 0.

Proof: In equilibrium, ρ̂ is not a function of time.

⇒ ∂tρ̂eq = 0 ⇒
[
Ĥ, ρ̂

]
= 0

Corollary 2: In equilibrium, ρ̂, can depend only on the Hamiltonian and operators that
commute with the Hamiltonian. (I.e. that correspond to conserved quantities.)

Let ϕn be energy eigenstates:

Ĥϕn = Enϕn

Quantum mechanics tell us that, if Â commutes with Ĥ, then ϕn can be chosen so that
they are eigenstates of both Â and Ĥ.

Corollary 3: In this basis, the density operator is diagonal:

ρnm = δnmρn

where ρn is a function of the En and of the eigenvalues of any other conserved
quantities that ρ̂ depends on.

Corollary 4:

Liouville’s Equation:
d

dt
ρ (p, q, t) = 0

Postulate 1 - Postulate of Equal a priori Probabilities: For an isolated system in
equilibrium:

ρn = ρ(En)

with ρn given by equation (?) in §4.2.

Remark 9: “Isolated” means isolated up to the butterfly effect.

Postulate 2 - Approach to Equilibrium: This is the exact same as done in §1.3.2.P2.

Remark 10: Remaining job: to find the statistical operator for systems that are not
isolated.
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1.5.2 The Density Matrix for Various Ensembles

Microcanonical Ensemble: By §5.1, the statistical operator in terms of its matrix ele-
ments in a basis of energy eigenstates is:

ρn =
1∑

1
cdot

{
1, E −∆E < En < E

0, otherwise

Canonical Ensemble: By §4.3, the correct matrix elements are given by:

ρ̂ =
1

Z
e−βĤ

with Z = tr
(
e−βĤ

)
being the canonical partition function. We can also write

Z = tr
(
e−βĤ

)
=
∑

n
〈
ϕn

∣∣∣e−βĤ ∣∣∣ϕn〉
=
∑
n

〈
ϕn

∣∣∣e−βEn

∣∣∣ϕn〉
=
∑
n

e−βEn

Grand Canonical Ensemble: By §1.4.4:

ρ̂ =
1

Z
e−β(Ĥ−µN̂)

where N̂ is the number operator and

Z = tr
(
e−β(Ĥ−µN̂)

)
is the grand partition function. We know that

Ĥ |ϕn,N 〉 = En |ϕn,N 〉 , N̂ |ϕn,N 〉 = Nn |ϕn,N 〉

And thus we can write Z as:

Z = tr
(
e−β(Ĥ−µN̂)

)
=
∑
n,N

〈
ϕn,N

∣∣∣e−β(Ĥ−µN̂)
∣∣∣ϕn,N〉

=
∑
n,N

〈
ϕn,N

∣∣∣e−β(En−µNn)
∣∣∣ϕn,N〉 since

[
Ĥ, N̂

]
= 0

=
∑
n,N

e−β(E−n−µNn)
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Remark 1: All thermodynamic quantities can be calculated from the partition function
as before. In particular, in the canonical ensemble, we have

F = −kBT lnZ = −kBT ln
[
tr
(
e−βĤ

)]
and in the grand canonical ensemble:

J = −kBT lnZ = −kBT ln
[
tr
(
e−β(Ĥ−µN̂)

)]

Remark 2: Statistical mechanics, quantum or classical, then boils down to calculating
partition functions.

1.5.3 Fermions and Bosons

Consider a quantum system consisting of N particles, which, for simplicity, we will take
to be non-interacting. Let the single particle energy levels be denoted E(n = 0, 1, 2, . . .).
Each of the corresponding eigenstates can be occupied by 0, 1, 2, . . . particles.

Postulate 1: Quantum particles come in two species: fermions and bosons. For fermions,
at most one particle can occupy a given energy eigenstate, while any number of
bosons can occupy any given energy eigenstate.

Remark 1: The restriction on fermions applies only to fermions of the same kind (eg, all
electrons) whose quantum numbers are the same.

Remark 2: The fermionic restriction is known as the Pauli Exclusion Principle.

Remark 3: Fermions have half-integer spin, whereas bosons have integer spin.

¡++¿ ¡++¿
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