The number of elements of *G* is the *order* of *G*, denoted |G|.

The smallest positive integer *n* such that $a^n = e$ is the **order** of *a*, denoted |a|.

The number of elements of *G* is the *order* of *G*, denoted |G|.

The smallest positive integer *n* such that $a^n = e$ is the *order* of *a*, denoted |a|.

Theorem. $|a| = |\langle a \rangle|$.

The number of elements of *G* is the *order* of *G*, denoted |G|.

The smallest positive integer *n* such that $a^n = e$ is the *order* of *a*, denoted |a|.

Theorem. $|a| = |\langle a \rangle|$.

Theorem. $a^i = a^j$ if and only if *n* divides i - j. In particular, if $a^k = e$ then *n* divides *k*.

Cyclic groups!

The group *G* is *cyclic* if *G* is generated by a single element. In other words, $G = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$ for some $a \in G$.

Cyclic groups!

The group *G* is *cyclic* if *G* is generated by a single element. In other words, $G = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$ for some $a \in G$.

Theorems about cyclic groups.

Let *a* be an element of order *n* in a group *G*.

- For a positive integer k, $\langle a^k \rangle = \langle a^{\text{gcd}(n,k)} \rangle$.
- 2 $|a^{k}| = n/\gcd(n, k).$
- In a finite cyclic group, the order of an element divides the order of the group.
- a^k is a generator of $\langle a \rangle$ if and only if gcd(n, k) = 1.
- (Fundamental Theorem of Cyclic Groups)
 - Every subgroup of a cyclic group is cyclic. Specifically, every subgroup of (a) has the form (a^k) for some positive integer k.
 - For every positive divisor k of n, the group ⟨a⟩ has exactly one subgroup of order k, namely ⟨a^{n/k}⟩.