Normal Subgroups!

A subgroup H < G is a normal subgroup of G, denoted H < G, if
aH = Haforalla e G.



Normal Subgroups!

A subgroup H < G is a normal subgroup of G, denoted H < G, if
aH = Haforalla e G.

Theorem (Normal Subgroup Test)

A subgroup H of G is normal in G if and only ifaHa=! C H for all a € G.




Normal Subgroups!

A subgroup H < G is a normal subgroup of G, denoted H < G, if
aH = Haforalla e G.

Theorem (Normal Subgroup Test)

A subgroup H of G is normal in G if and only ifaHa=! C H for all a € G.

The factor group G/H is the set {aH | a € G} with operation
(aH)(bH) = abH.

@« G/HisagroupifandonlyifH < G. © ® ®
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Cool applications of normal subgroups, factor groups, and
internal direct products

If G/Z(G) is cyclic then G is Abelian.
(And G = Z(G) and G/Z(G) = {e}.)

G/Z(G) ~ Inn(G).

Theorem

If G is a finite Abelian group, p is prime, and p divides G, then G has
an element of order p.

Theorem
If p is prime and |G| = p? then G ~ Zye or G =~ Zp & Zp.
(So all groups of order p? are Abelian.)
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