A subgroup $H \leq G$ is a *normal subgroup* of G, denoted $H \triangleleft G$, if aH = Ha for all $a \in G$.

A subgroup $H \leq G$ is a *normal subgroup* of *G*, denoted $H \lhd G$, if aH = Ha for all $a \in G$.

Theorem (Normal Subgroup Test)

A subgroup H of G is normal in G if and only if $aHa^{-1} \subseteq H$ for all $a \in G$.

A subgroup $H \leq G$ is a *normal subgroup* of *G*, denoted $H \lhd G$, if aH = Ha for all $a \in G$.

Theorem (Normal Subgroup Test)

A subgroup H of G is normal in G if and only if $aHa^{-1} \subseteq H$ for all $a \in G$.

The *factor group* G/H is the set $\{aH | a \in G\}$ with operation (aH)(bH) = abH.

Theorem

 $\circledast \circledast (H)$ is a group if and only if $H \lhd G$. $\circledast \circledast (H)$

Internal direct products!

G is the *internal direct product* of two subgroups H and K if

- H and K are both normal subgroups of G
- $G = HK = \{hk \mid h \in H, k \in K\}$
- $H \cap K = \{e\}.$

Internal direct products!

G is the *internal direct product* of two subgroups H and K if

• H and K are both normal subgroups of G

•
$$G = HK = \{hk \mid h \in H, k \in K\}$$

• $H \cap K = \{e\}.$

G is the *internal direct product* $H_1 \times \cdots \times H_n$ of subgroups H_1, \ldots, H_n if

- H_1, \ldots, H_n are all normal subgroups of G
- $G = H_1 \cdots H_n$
- $H_i \cap H_j = \{e\}$ for all $i \neq j$.

Internal direct products!

G is the *internal direct product* of two subgroups H and K if

• H and K are both normal subgroups of G

•
$$G = HK = \{hk \mid h \in H, k \in K\}$$

• $H \cap K = \{e\}.$

G is the *internal direct product* $H_1 \times \cdots \times H_n$ of subgroups H_1, \ldots, H_n if

- H_1, \ldots, H_n are all normal subgroups of G
- $G = H_1 \cdots H_n$
- $H_i \cap H_j = \{e\}$ for all $i \neq j$.

Theorem

 $H_1 \times \cdots \times H_n \approx H_1 \oplus \cdots \oplus H_n.$

Cool applications of normal subgroups, factor groups, and internal direct products

Theorem

If G/Z(G) is cyclic then G is Abelian. (And G = Z(G) and $G/Z(G) = \{e\}$.)

Theorem

 $G/Z(G) \approx \operatorname{Inn}(G).$

Theorem

If G is a finite Abelian group, p is prime, and p divides G, then G has an element of order p.

Theorem

If p is prime and $|G| = p^2$ then $G \approx \mathbb{Z}_{p^2}$ or $G \approx \mathbb{Z}_p \oplus \mathbb{Z}_p$. (So all groups of order p^2 are Abelian.)