$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

Cool Facts about the Fundamental Theorem:

Allows us to classify all finite Abelian groups!

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

- Allows us to classify all finite Abelian groups!
- The numbers $p_i^{n_i}$ are called the *elementary divisors* of *G*. We can also write *G* uniquely as $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_j}$ where $m_1|m_2|\cdots|m_j$. The numbers m_i are called *invariant factors* of *G*.

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

- Allows us to classify all finite Abelian groups!
- The numbers $p_i^{n_i}$ are called the *elementary divisors* of *G*. We can also write *G* uniquely as $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_j}$ where $m_1|m_2|\cdots|m_j$. The numbers m_i are called *invariant factors* of *G*.
- The theorem can be generalized to the Fundamental Theorem of Finitely Generated Abelian Groups, including some copies of Z.

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

- Allows us to classify all finite Abelian groups!
- The numbers $p_i^{n_i}$ are called the *elementary divisors* of *G*. We can also write *G* uniquely as $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_j}$ where $m_1|m_2|\cdots|m_j$. The numbers m_i are called *invariant factors* of *G*.
- The theorem can be generalized to the Fundamental Theorem of Finitely Generated Abelian Groups, including some copies of Z.
- There's an algorithm to find this decomposition for a given *G*!

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

- Allows us to classify all finite Abelian groups!
- The numbers $p_i^{n_i}$ are called the *elementary divisors* of *G*. We can also write *G* uniquely as $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_j}$ where $m_1|m_2|\cdots|m_j$. The numbers m_i are called *invariant factors* of *G*.
- The theorem can be generalized to the Fundamental Theorem of Finitely Generated Abelian Groups, including some copies of Z.
- There's an algorithm to find this decomposition for a given G!
- The converse of Lagrange's Theorem is true for Abelian groups.

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the numbers p_i are not necessarily distinct primes, up to a reordering of the terms in the product.

- Allows us to classify all finite Abelian groups!
- The numbers $p_i^{n_i}$ are called the *elementary divisors* of *G*. We can also write *G* uniquely as $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_j}$ where $m_1|m_2|\cdots|m_j$. The numbers m_i are called *invariant factors* of *G*.
- The theorem can be generalized to the Fundamental Theorem of Finitely Generated Abelian Groups, including some copies of Z.
- There's an algorithm to find this decomposition for a given G!
- The converse of Lagrange's Theorem is true for Abelian groups.
- Hard to prove but much easier than the corresponding Classification of Finite Simple Groups.

Every finite Abelian group *G* is isomorphic to a unique group of the form $\mathbb{Z}_{p_{*}^{n_{1}}} \oplus \mathbb{Z}_{p_{*}^{n_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{*}^{n_{k}}}$

Proof.

1. $G = H_1 \times H_2 \times \cdots \times H_k$ where $|H_i| = p_i^{n_i}$ for p_i prime. $(H_i \text{ not necessarily cyclic.})$ Let $|G| = p^n m$ where $p \not\mid m$, and let $H = \{x \in G \mid x^{p^n} = e\}$ and $K = \{x \in G \mid x^m = e\}.$ **a.** *H* < *G* and *K* < *G*. **b.** HK = G. (by Bézout's Identity) **c.** $H \cap K = \{e\}.$ d. $G = H \times K$. **e.** $|H||K| = p^n m$. f. p/|K|. **q.** $|H| = p^n$. **h.** $G = H_1 \times H_2 \times \cdots \times H_k$ where $|H_i| = p_i^{n_i}$ for p_i prime. (Induction) Every finite Abelian group *G* is isomorphic to a unique group of the form $\mathbb{Z}_{p_{*}^{n_{1}}} \oplus \mathbb{Z}_{p_{*}^{p_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{*}^{n_{k}}}$

2. $H_i = \langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_t \rangle$ for elements $a_1, a_2, \ldots, a_t \in H_i$. **a.** Let $a \in H_i$ with maximal order $|a| = p^m$. If $m = n_i$ then $H_i = \langle a \rangle$. **b.** $x^{p^m} = e$ for all $x \in H_i$. **c.** Let $b \notin \langle a \rangle$ with minimal order. $|b^p| = |b|/p$. **d.** $b^p = a^j$ for some integer *j*. **e.** $|b^p| < p^{m-1}$. **f.** p|j, so pr = j for some integer r. **g.** Let $c = a^{-r}b$. $c \notin \langle a \rangle$. **h.** |c| = p. i. |b| = p. j. $\langle \boldsymbol{a} \rangle \cap \langle \boldsymbol{b} \rangle = \emptyset$. **k.** Let $H = H_i / \langle b \rangle$. In \overline{H} , $|a \langle b \rangle| = p^m$. **I.** $\overline{H} = \langle a \langle b \rangle \rangle \times \overline{L}$ for some $\overline{L} \leq \overline{H}$. (Induction hypothesis) **m.** Let $\phi: H_i \to \overline{H}$ be given by $\phi(x) = x \langle b \rangle$, and $L = \phi^{-1}(\overline{L})$. $\langle a \rangle \cap L = \emptyset$. **n.** $H_i = \langle a \rangle L$. **o.** $H_i = \langle a \rangle \times L$. **p.** $H_i = \langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_t \rangle$ for elements $a_1, a_2, \ldots, a_t \in H_i$. (Induction)

Every finite Abelian group *G* is isomorphic to a unique group of the form $\mathbb{Z}_{p_2^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$