
The Fundamental Theorem of Finite Abelian Groups!

Every finite Abelian group is isomorphic to a unique group of the form

Zpn1
1
⊕ Zpn2

2
⊕ · · · ⊕ Zp

nk
k

where the numbers pi are not necessarily distinct primes, up to a
reordering of the terms in the product.

Cool Facts about the Fundamental Theorem:
Allows us to classify all finite Abelian groups!
The numbers pni

i are called the elementary divisors of G. We can
also write G uniquely as Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmj where
m1|m2| · · · |mj . The numbers mi are called invariant factors of G.
The theorem can be generalized to the Fundamental Theorem of
Finitely Generated Abelian Groups, including some copies of Z.
There’s an algorithm to find this decomposition for a given G!
The converse of Lagrange’s Theorem is true for Abelian groups.
Hard to prove but much easier than the corresponding
Classification of Finite Simple Groups.
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Every finite Abelian group G is isomorphic to a unique group of
the form Zpn1

1
⊕ Zpn2

2
⊕ · · · ⊕ Zp

nk
k

Proof.
1. G = H1 × H2 × · · · × Hk where |Hi | = pni

i for pi prime.
(Hi not necessarily cyclic.)
Let |G| = pnm where p6 |m, and let H = {x ∈ G | xpn

= e} and
K = {x ∈ G | xm = e}.
a. H ≤ G and K ≤ G.
b. HK = G. (by Bézout’s Identity)
c. H ∩ K = {e}.
d. G = H × K .
e. |H||K | = pnm.
f. p6 ||K |.

g. |H| = pn.
h. G = H1 × H2 × · · · × Hk where |Hi | = pni

i for pi prime. (Induction)
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2. Hi = 〈a1〉 × 〈a2〉 × · · · × 〈at〉 for elements a1,a2, . . . ,at ∈ Hi .
a. Let a ∈ Hi with maximal order |a| = pm. If m = ni then Hi = 〈a〉.
b. xpm

= e for all x ∈ Hi .
c. Let b 6∈ 〈a〉 with minimal order. |bp| = |b|/p.
d. bp = aj for some integer j .
e. |bp| ≤ pm−1.
f. p|j , so pr = j for some integer r .

g. Let c = a−r b. c 6∈ 〈a〉.
h. |c| = p.
i. |b| = p.
j. 〈a〉 ∩ 〈b〉 = ∅.
k. Let H = Hi/〈b〉. In H, |a〈b〉| = pm.
l. H = 〈a〈b〉〉 × L for some L ≤ H. (Induction hypothesis)

m. Let φ : Hi → H be given by φ(x) = x〈b〉, and L = φ−1(L). 〈a〉 ∩ L = ∅.
n. Hi = 〈a〉L.
o. Hi = 〈a〉 × L.
p. Hi = 〈a1〉 × 〈a2〉 × · · · × 〈at〉 for elements a1,a2, . . . ,at ∈ Hi .

(Induction)
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3. If Hi = C1 × C2 × · · · × Ck for cyclic groups with
|C1| ≥ |C2| ≥ . . . ≥ |Ck | and Hi = D1 × D2 × · · · × Dj for cyclic
groups with |D1| ≥ |D2| ≥ . . . ≥ |Dj | then k = j and C1 ≈ D1,
C2 ≈ D2, . . ., Ck ≈ Dk .
a. If k = 1 and j = 1 then C1 ≈ C2.
b. Hp

i = {hp |h ∈ Hi} is a proper subgroup of Hi .
c. Hp

i = Cp
1 × Cp

2 × · · · × Cp
k ′ where k ′ is the largest value of i for which

|Ci | > p and Hp
i = Dp

1 × Dp
2 × · · · × Dp

j′ where j ′ is the largest value of
i for which |Di | > p.

d. k ′ = j ′ and Cp
1 ≈ Dp

1 , Cp
2 ≈ Dp

2 , . . ., Cp
k ′ ≈ Dp

j′ . (Induction hypothesis)
e. k − k ′ = j − j ′.
f. k = j and C1 ≈ D1, C2 ≈ D2, . . ., Ck ≈ Dk .

4. G is isomorphic to a unique group of the form
Zpn1

1
⊕ Zpn2

2
⊕ · · · ⊕ Zp

nk
k

.
a. G is isomorphic to such a group.
b. This group is unique.


