Products of Groups!

The *external direct product* of the groups $G_1, G_2, ..., G_n$ is $G_1 \oplus G_2 \oplus \cdots \oplus G_n = \{(g_1, g_2, ..., g_n) | g_i \in G_i\}$ with operation

 $(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 h_1, g_2 h_2, \ldots, g_n h_n).$

Products of Groups!

The **external direct product** of the groups G_1, G_2, \ldots, G_n is

$$G_1 \oplus G_2 \oplus \cdots \oplus G_n = \{(g_1, g_2, \ldots, g_n) \mid g_i \in G_i\}$$

with operation

$$(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 h_1, g_2 h_2, \ldots, g_n h_n).$$

Properties of external direct products:

• $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ is a group.

•
$$|(g_1, g_2, ..., g_n)| = \operatorname{lcm}(|g_1|, |g_2|, ..., |g_n|).$$

G₁ ⊕ G₂ ⊕ · · · ⊕ G_n is cyclic if and only if G₁, G₂, . . ., and G_n are cyclic and |G₁|, |G₂|, . . ., and |G_n| are relatively prime.