

A **group** is a non-empty set G together with a binary operation * on G that satisfies the following properties.

0. Closure. $a * b \in G$ for all $a, b \in G$.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- **3. Existence of Inverses.** For all $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.

A group is a non-empty set G together with a binary operation * on G that satisfies the following properties.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- **3.** Existence of Inverses. For all $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.

• Specific enough to be useful, general enough to be powerful.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- **3.** Existence of Inverses. For all $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.
 - Specific enough to be useful, general enough to be powerful.
 - With two binary operations on *G*, you get a **ring** or a **field**.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- **3. Existence of Inverses.** For all $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.
 - Specific enough to be useful, general enough to be powerful.
- With two binary operations on *G*, you get a **ring** or a **field**.
- Missing from the definition: Commutativity. *ab* = *ba* for all *a*, *b* ∈ *G*. If *G* satisfies the commutative law, then *G* is *Abelian*.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- **3.** Existence of Inverses. For all $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.
 - Specific enough to be useful, general enough to be powerful.
- With two binary operations on *G*, you get a **ring** or a **field**.
- Missing from the definition: Commutativity. *ab* = *ba* for all *a*, *b* ∈ *G*. If *G* satisfies the commutative law, then *G* is *Abelian*.
- Missing from the definition: The identity is unique, and the inverse of an element is unique.

- **0.** Closure. $a * b \in G$ for all $a, b \in G$.
- **1.** Associativity. (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- **2.** Existence of an Identity. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- **3.** Existence of Inverses. For all $a \in G$, there exists an element $b \in G$ such that a * b = b * a = e.
 - Specific enough to be useful, general enough to be powerful.
- With two binary operations on *G*, you get a **ring** or a **field**.
- Missing from the definition: Commutativity. *ab* = *ba* for all *a*, *b* ∈ *G*. If *G* satisfies the commutative law, then *G* is *Abelian*.
- Missing from the definition: The identity is unique, and the inverse of an element is unique.
- Common notation: * as *addition* a + b, with identity 0 and inverses -a, or * as *multiplication* ab, with identity 1 and inverses a^{-1} .