A *homomorphism* ϕ from a group G to a group \overline{G} is a function $\phi: G \to \overline{G}$ that is operation preserving, i.e.

 $\phi(ab) = \phi(a)\phi(b).$

A *homomorphism* ϕ from a group G to a group \overline{G} is a function $\phi: G \to \overline{G}$ that is operation preserving, i.e.

 $\phi(ab) = \phi(a)\phi(b).$

The *kernel* of the homomorphism ϕ is the set of elements that map to the identity of \overline{G} ,

$$\operatorname{Ker} \phi = \{ \boldsymbol{g} \in \boldsymbol{G} \, | \, \phi(\boldsymbol{g}) = \boldsymbol{e} \}.$$

Properties of Homomorphisms

Let ϕ : $G \rightarrow \overline{G}$ be a homomorphism, and let $H \leq G$ and $a, b \in G$. • $\phi(e_G) = e_{\overline{G}}$ and $\phi(a^n) = (\phi(a))^n$ for all $n \in \mathbb{Z}$. 2 Ker $\phi \triangleleft G$. **3** $\phi(a) = \phi(b)$ if and only if a Ker $\phi = b$ Ker ϕ . • $\phi(a) = \overline{a}$ if and only if $\phi^{-1}(\overline{a}) = a \operatorname{Ker} \phi$. **1** If *H* is Abelian then $\phi(H)$ is Abelian. **(**) If $H = \langle a \rangle$ then $\phi(H) = \langle \phi(a) \rangle$. **1** If |a| is finite, $|\phi(a)|$ divides |a|. **3** $H \leq G$ if and only if $\phi(H) \leq \overline{G}$. **9** $H \triangleleft G$ if and only if $\phi(H) \triangleleft \overline{G}$. **1** If $|\operatorname{Ker} \phi| = n$ then $\phi : G \to \phi(G)$ is an *n*-to-1 map. **(1)** Ker $\phi = \{e\}$ if and only if $\phi : G \to \phi(G)$ is an isomorphism. **2** First Isomorphism Theorem. $\alpha : G / \text{Ker } \phi \to \phi(G)$ given by $\alpha(a \operatorname{Ker} \phi) = \phi(a)$ is an isomorphism. **1** $\phi(G)$ divides |G| and $|\overline{G}|$, and $|\phi(H)|$ divides |H|, |G|, and $|\overline{G}|$. **1** If $H \triangleleft G$ then $\beta : G \rightarrow G/H$ given by $\beta(a) = aH$ is a homomorphism and $H = \text{Ker } \beta$.