A subring *A* of *R* is an *ideal* if $ra \in A$ and $ar \in A$ for all $a \in A$, $r \in R$. (*A* "absorbs" elements of *R*.)

A subring *A* of *R* is an *ideal* if $ra \in A$ and $ar \in A$ for all $a \in A$, $r \in R$. (*A* "absorbs" elements of *R*.)

Theorem (Ideal Test)

A subset A of R is an ideal of R if and only if $a - b \in A$ whenever $a, b \in A$ and $ra, ar \in A$ whenever $a \in A$, $r \in R$.

A subring *A* of *R* is an *ideal* if $ra \in A$ and $ar \in A$ for all $a \in A$, $r \in R$. (*A* "absorbs" elements of *R*.)

Theorem (Ideal Test)

A subset A of R is an ideal of R if and only if $a - b \in A$ whenever $a, b \in A$ and $ra, ar \in A$ whenever $a \in A$, $r \in R$.

For a commutative ring R, $\langle a \rangle = \{ra \mid r \in R\}$ is the *principal ideal* generated by *a*.

A subring *A* of *R* is an *ideal* if $ra \in A$ and $ar \in A$ for all $a \in A$, $r \in R$. (*A* "absorbs" elements of *R*.)

Theorem (Ideal Test)

A subset A of R is an ideal of R if and only if $a - b \in A$ whenever $a, b \in A$ and $ra, ar \in A$ whenever $a \in A$, $r \in R$.

For a commutative ring R, $\langle a \rangle = \{ra \mid r \in R\}$ is the *principal ideal* generated by *a*.

The *factor ring* R/A is the set $\{r + A | r \in R\}$ with operations (s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A.

Theorem

For a subring A of R, R/A is a ring if and only if A is an ideal of R.