An **isomorphism** ϕ from a group G to a group \overline{G} is a bijection $\phi: G \to \overline{G}$ that is **operation preserving**, which means

 $\phi(ab) = \phi(a)\phi(b).$

If there exists an isomorphism from *G* to \overline{G} , then we say that *G* and \overline{G} are *isomorphic* and write $G \approx \overline{G}$.

An **isomorphism** ϕ from a group G to a group \overline{G} is a bijection $\phi: G \to \overline{G}$ that is **operation preserving**, which means

 $\phi(ab) = \phi(a)\phi(b).$

If there exists an isomorphism from *G* to \overline{G} , then we say that *G* and \overline{G} are *isomorphic* and write $G \approx \overline{G}$.

Theorem

Isomorphism is an equivalence relation on groups.

Let $\phi: \mathbf{G} \to \overline{\mathbf{G}}$ be an isomorphism.

- $|G| = |\overline{G}|.$
- $(\varphi(a))^{-1} = \varphi(a^{-1}) \text{ for all } a \in G.$
- $\varphi(a^n) = (\varphi(a))^n$ for all $a \in G$ and $n \in \mathbb{Z}$.
- **o** a and b commute if and only if $\varphi(a)$ and $\varphi(b)$ commute.
- G is Abelian if and only if \overline{G} is Abelian.

•
$$G = \langle a \rangle$$
 if and only if $\overline{G} = \langle \varphi(a) \rangle$.

- $|a| = |\varphi(a)| \text{ for all } a \in G.$
- For any subset $H \subseteq G$, $H \leq G$ if and only if $\varphi(H) \leq \overline{G}$.

An *automorphism* of *G* is an isomorphism $\phi : G \rightarrow G$.

Theorem

The set of automorphisms of G, Aut(G), forms a group under function composition.

An *automorphism* of *G* is an isomorphism $\phi : G \rightarrow G$.

Theorem

The set of automorphisms of G, Aut(G), forms a group under function composition.

An *inner automorphism* of *G* is an automorphism defined by $\phi_a(x) = axa^{-1}$ for some $a \in G$. (*conjugation by a*)

Theorem

The set of inner automorphisms of G, Inn(G), forms a group under function composition.

An *automorphism* of *G* is an isomorphism $\phi : G \rightarrow G$.

Theorem

The set of automorphisms of G, Aut(G), forms a group under function composition.

An *inner automorphism* of *G* is an automorphism defined by $\phi_a(x) = axa^{-1}$ for some $a \in G$. (*conjugation by a*)

Theorem

The set of inner automorphisms of G, Inn(G), forms a group under function composition.

♡ ♡ 🗘 Cayley's Theorem 🗘 🗘 🕻

Every group is isomorphic to a group of permutations. In particular, every finite group is a subgroup of S_n .