Three increasingly useful ways to denote permutations

Three increasingly useful ways to denote permutations

• Function notation $\alpha(1) = 3$, $\alpha(2) = 1$, $\alpha(3) = 2$.

Three increasingly useful ways to denote permutations

Three increasingly useful ways to denote permutations

• Function notation
$$\alpha(1) = 3$$
, $\alpha(2) = 1$, $\alpha(3) = 2$.

Three increasingly useful ways to denote permutations

• Function notation
$$\alpha(1) = 3$$
, $\alpha(2) = 1$, $\alpha(3) = 2$.

Occupie Cycle notation (132).

A *permutation group* is a set of permutations that forms a group under function composition.

Three increasingly useful ways to denote permutations

• Function notation
$$\alpha(1) = 3$$
, $\alpha(2) = 1$, $\alpha(3) = 2$.

Occupie Cycle notation (132).

A *permutation group* is a set of permutations that forms a group under function composition.

The *symmetric group* S_n is the group of all permutations of the set $\{1, 2, ..., n\}$.

Every permutation can be written as a product of disjoint cycles.

Theorem

Disjoint cycles commute.

Theorem

The order of a product of disjoint cycles is the least common multiple of the lengths of the cycles.

The alternating group

Theorem

Every permutation can be written as a product of 2-cycles (transpositions).

The alternating group

Theorem

Every permutation can be written as a product of 2-cycles (transpositions).

Theorem

For a given permutation α , the number of two-cycles in such a product is always even or always odd.

Every permutation can be written as a product of 2-cycles (transpositions).

Theorem

For a given permutation α , the number of two-cycles in such a product is always even or always odd.

A permutation that can be expressed as a product of an even number of two-cycles is called an *even* permutation.

Every permutation can be written as a product of 2-cycles (transpositions).

Theorem

For a given permutation α , the number of two-cycles in such a product is always even or always odd.

A permutation that can be expressed as a product of an even number of two-cycles is called an *even* permutation.

Theorem

The set of even permutations in S_n forms a subgroup of S_n , called the **alternating group** A_n .

Every permutation can be written as a product of 2-cycles (transpositions).

Theorem

For a given permutation α , the number of two-cycles in such a product is always even or always odd.

A permutation that can be expressed as a product of an even number of two-cycles is called an *even* permutation.

Theorem

The set of even permutations in S_n forms a subgroup of S_n , called the **alternating group** A_n .

Theorem

 $|A_n| = n!/2.$