

🛨 Rings! 🛨

- **O** Addition is commutative. a + b = b + a for all $a, b \in R$.
- 2 Addition is associative. (a+b) + c = a + (b+c) for $a, b, c \in R$.
- 3 Additive identity. There exists an element $0 \in R$ such that a + 0 = 0 + a = a for all $a \in R$.
- **4 Additive inverses.** For all $a \in R$, there exists an element $b \in R$ such that a + b = b + a = 0.

🛧 Rings! 🛧

- **O** Addition is commutative. a + b = b + a for all $a, b \in R$.
- 2 Addition is associative. (a+b) + c = a + (b+c) for $a, b, c \in R$.
- 3 Additive identity. There exists an element $0 \in R$ such that a + 0 = 0 + a = a for all $a \in R$.
- **4 Additive inverses.** For all $a \in R$, there exists an element $b \in R$ such that a + b = b + a = 0.
- **3** Multiplication is associative. (ab)c = a(bc) for all $a, b, c \in R$.
- **O Distributive laws.** a(b+c) = ab + ac and (b+c)a = ba + ca.

🛨 Rings! 🛨

- **O** Addition is commutative. a + b = b + a for all $a, b \in R$.
- 2 Addition is associative. (a+b) + c = a + (b+c) for $a, b, c \in R$.
- 3 Additive identity. There exists an element $0 \in R$ such that a + 0 = 0 + a = a for all $a \in R$.
- **4 Additive inverses.** For all $a \in R$, there exists an element $b \in R$ such that a + b = b + a = 0.
- **3** Multiplication is associative. (ab)c = a(bc) for all $a, b, c \in R$.
- **O Distributive laws.** a(b+c) = ab + ac and (b+c)a = ba + ca.
 - If multiplication is commutative, *R* is a *commutative ring*.
 - If R has a multiplicative identity, it's called a unity.
 - If R has multiplicative inverses, they're called units.

🛧 Rings! 🛧

- **O** Addition is commutative. a + b = b + a for all $a, b \in R$.
- 2 Addition is associative. (a+b) + c = a + (b+c) for $a, b, c \in R$.
- 3 Additive identity. There exists an element $0 \in R$ such that a + 0 = 0 + a = a for all $a \in R$.
- **4 Additive inverses.** For all $a \in R$, there exists an element $b \in R$ such that a + b = b + a = 0.
- **3** Multiplication is associative. (ab)c = a(bc) for all $a, b, c \in R$.
- **O Distributive laws.** a(b+c) = ab + ac and (b+c)a = ba + ca.
 - If multiplication is commutative, *R* is a *commutative ring*.
 - If R has a multiplicative identity, it's called a unity.
 - If *R* has multiplicative inverses, they're called *units*.
 - If R is commutative, has unity, and every non-zero element is a unit, then R is a *field*.

Let *R* be a ring and let $a, b, c \in R$. Let -a denote the additive inverse of *a*.

- a0 = 0a = 0.
 a(-b) = (-a)b = -(ab).
 (-a)(-b) = ab.
 a(b c) = ab ac and (b c)a = ba ca.
 If *R* has unity 1, then (-1)a = -a.
 If *R* has unity, it's unique.
 If *a* is a unit, its multiplicative inverse a⁻¹ is unique.
 Subring Test Let S ⊂ R. S is a ring with the operation of the second second
- **3** Subring Test. Let $S \subseteq R$. S is a ring with the operations of R if for all $a, b \in S$, $a b \in S$ and $ab \in S$.