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Theorem (Finite Subgroup Test)

Let G be a group and H be a non-empty finite subset of G.
Ifab e H foralla,b € Hthen H < G.




Subgroups everywhere!

“Examples” of Subgroups of a Group G:
@ The subgroup generated by an element a € G:
(ay={a"|neZ}.

© The intersection of two subgroups H and K of G:
HNnK={g|geH geK}.

© If Gis Abelian, the product of two subgroups H and K of G:
HK ={hk|he H,k € K}.

© The center of G:
Z(G)={aec G|ag = gaforall g € G}.

© The centralizer of an element a € G:
C(a)={g € G|ag = ga}.



