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1. Background

Throughout this paper we consider only finite ordered sets. We begin with back-
ground material on comparability invariance. A property or parameter of an ordered
set is said to be comparability invariant if all orders with a given comparability
graph have that property or have the same value of that parameter.

The first printed reference we know of to the phrase “comparability invariant”
is in Habib’s paper [11]. However Habib [Personal Communication, December
2000] tells us that he first learned the phrase in conversations with Arditti and
Golumbic. The interest in comparability invariants arises from papers of Arditti [1],
Gysin [10], and Trotter et al. [17] in which they show that all transitive orientations
of a finite comparability graph have the same dimension, and one of Arditti and
Jung [2] in which they extend the result to infinite comparability graphs. Trotter
et al. attribute the question of whether all orders having the same comparability
graph have the same dimension to Bogart. The paper [18] shows comparability
invariance for a class of orders related to those considered in this paper. The paper
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[12] by Habib et al. has brought the idea of a comparability invariant to the attention
of a broader audience and is one of the motivations for the current paper. A second
motivation is a conversation between one of the authors (Trenk) and Habib in
1999.

It is natural to ask whether any “reasonable” property of an ordered set is a
comparability invariant. The ordered set with elements t , b, and a1, a2, and a3,
with b ≺ ai ≺ t and no other relations has a comparability graph isomorphic with
the ordered set t1, t2, t3, a, and b, with b ≺ a ≺ ti and no other relations. However
the number of maximal elements of the first ordered set is one, as is the number of
minimal elements, while the number of maximal elements of the second ordered
set is three, while the number of minimal elements is one. Thus neither the number
of maximal elements nor the total number of maximal and minimal elements is a
comparability invariant.

In this paper we show that the property of belonging to set S is a comparability
invariant for S = {bounded tolerance orders}, S = {unit bitolerance orders}, and
S = {unit tolerance orders}. Each of these classes has an alternate characterization:
bounded tolerance orders are equivalent to parallelogram orders, unit bitolerance
orders are equivalent to point-core bitolerance orders, and unit tolerance orders
are equivalent to 50% tolerance orders. We review these alternate characterizations
which will be used in the comparability invariance proofs in Section 2.

1.1. COMPARABILITY INVARIANCE

We next present the standard technique for proving that an ordered set property is
a comparability invariant. Given a graph G = (V ,E), a set A ⊆ V is called an
autonomous set if every vertex in V \A is either adjacent to all of the vertices in A
or none of the vertices in A. Autonomous sets play a key role in relating ordered
sets that have the same comparability graph.

Let P = (V ,≺1) andQ = (V ,≺2) be ordered sets with the same comparability
graph G. We say that Q is obtained from P by an elementary reversal if there is a
set A ⊆ V that is autonomous in G and satisfies the following:

1. A is not an independent set of G.
2. If x, y are not both in A then x ≺1 y iff x ≺2 y.
3. If x, y ∈ A then x ≺1 y iff y ≺2 x.

In this process,Q is obtained from P (and vice versa) by reversing the compara-
bilities in A. Note that the definition of an autonomous set A in the comparability
graph of an order P allows for the possibility of an element x which is above
some elements of A and below others. However, the second and third conditions
above imply that this is not possible in an autonomous set that participates in an
elementary reversal. We record this below in a remark. In this paper we will only
be concerned with autonomous sets that participate in elementary reversals, called
order autonomous sets in [14].
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Remark 1. If Q = (V ,≺2) is obtained from P = (V ,≺1) by an elementary
reversal using the order autonomous set A, then the sets Pred(A) = {v ∈ V | x ≺1

a for all a ∈ A}, Succ(A) = {w ∈ V | a ≺1 w for all a ∈ A}, and Inc(A) = {z ∈
V | z||a for all a ∈ A} partition V \A.

By the second condition in the definition of an elementary reversal, we could also
use the relation ≺2 of Q in defining the sets Pred(A), Succ(A), and Inc(A).

If A is an order autonomous set and a ∈ A is incomparable to every other
element of A, then A′ = A\{a} is another order autonomous set. Furthermore,
Q can be obtained from P by an elementary reversal of A if and only if Q can
be obtained from P by an elementary reversal of A′. When all such elements are
removed from an order autonomous set, the resulting set will not be empty by the
first condition of our definition. We record this as a remark.

Remark 2. If one ordered set is obtained from another by an elementary rever-
sal, this can be achieved using an order autonomous set A in which every element
of A is comparable to another element of A.

The following theorem of Gallai [7] (which appears in [16, p. 61–62]) shows that
we can move between any two orders with the same comparability graph by a
sequence of elementary reversals.

THEOREM 3 (Gallai). Let G = (V ,E) be the comparability graph associated
with distinct ordered sets P = (V ,≺P ) and Q = (V ,≺Q). Then there exists a
sequence of ordered sets P0, P1, . . . , Pm so that P0 = P , Pm = Q and Pi+1 is
obtained from Pi by an elementary reversal for i = 0, 1, . . . , m− 1.

Theorem 3 allows us to show a property is comparability invariant by considering
pairs of orders for which one can be obtained from the other by an elementary
reversal. A corollary of Theorem 3 which will be useful to us is given below.

COROLLARY 4. Let P and Q be finite ordered sets with the same comparability
graph and let S be a class of orders. To prove that P ∈ S ⇐⇒ Q ∈ S, it suffices
to prove P ∈ S ⇒ Q ∈ S where Q can be obtained from P by an elementary
reversal.

Proof. By Theorem 3 we need only prove P ∈ S ⇐⇒ Q ∈ S in the case that
Q can be obtained from P by an elementary reversal. However, since the process
of obtaining one order from another by an elementary reversal is symmetric, the
result follows. ✷

1.2. CLASSES OF BOUNDED BITOLERANCE ORDERS

A bounded bitolerance representation 〈I, p, q〉 of an order P = (V ,≺) consists
of a function I that maps each element v ∈ V to an interval Iv = [L(v), R(v)]
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on the real line and a pair of functions p and q that map each element v of V
to points p(v) and q(v) in the interval Iv with p(v) �= L(v) and q(v) �= R(v).
The point p(v) is called the left tolerant point of v and q(v) is called the right
tolerant point of v. In a bounded bitolerance representation of P = (V ,≺), we
have x ≺ y if and only if R(x) < p(y) and q(x) < L(y). An ordered set
is a bounded bitolerance order if it has such a representation. Given a bounded
bitolerance representation, the left tolerance of element v is the quantity tl (v) =
p(v)− L(v), and the right tolerance of element v is the quantity tr (v) = R(v)−
q(v).

Bounded bitolerance orders are the orders of interval dimension two, as first
observed in [15]. In [12] the property of having interval dimension 2 was shown to
be a comparability invariant.

Another way to represent a bounded bitolerance order uses trapezoids. Let L1

and L2 be horizontal lines with L1 above L2. We consider trapezoids Tv that have
one base on L1 and the other base on L2, and we allow degenerate trapezoids
in which either or both bases is a point. For trapezoids Tv with bases on L1 and
L2, we write Tx � Ty when Tx ∩ Ty = ∅ and every point of Tx is to the left
of some point of Ty , which we shorten to “Tx is to the left of Ty”. Similarly for
intervals Ix, Iy we will write Ix � Iy when Ix ∩ Iy = ∅ and Ix is to the left
of Iy .

A trapezoid representation of P = (V ,≺) is a function T that assigns to each
v ∈ V a trapezoid Tv with one base on L1 and the other base on L2, so that x ≺ y
iff Tx � Ty . An ordered set is called a trapezoid order (first defined in [5]) if it has
such a representation. The next result appears in [15].

PROPOSITION 5. An ordered set P is a bounded bitolerance order if and only if
P is a trapezoid order.

Proof. Given a bounded bitolerance representation 〈I, p, q〉 of P , let the base of
Tv along L1 be the interval [L(v), q(v)] and the base of Tv along L2 be the interval
[p(v), R(v)]. It is easy to check that this provides a trapezoid representation of P .
The process is reversible. To ensure that L(v) ≤ R(v) and p(v), q(v) ∈ Iv for each
v in V , it may be necessary to first subtract’a constant from all points on L1, so
that the left (respectively right) endpoint of the base on L1 is to the left of the left
(respectively right) endpoint of the base on L2. ✷
A bounded tolerance order is an order P = (V ,≺) with a bounded bitolerance
representation 〈I, p, q〉 in which tl(v) = tr (v) for each v ∈ V . In this case we
call the quantity tl(v) = tr (v) the tolerance of v and denote it by tv . In this light,
a bounded tolerance representation 〈I, t〉 consists of an assignment of intervals
I = {Iv | v ∈ V } and tolerances t = {tv | v ∈ V } for which 0 < tv ≤ |Iv| for all
v ∈ V . It is an easy exercise to check that x and y are comparable if and only if the
quantity |Ix ∩ Iv| is strictly less than both tolerances tx , ty .

When a bounded tolerance representation is converted to a trapezoid represen-
tation using the construction in the proof of Proposition 5, one can check that the
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resulting trapezoids are in fact parallelograms. An ordered set P = (V ,≺) is a
parallelogram order if it has a trapezoid representation in which every trapezoid is
a parallelogram. This assignment of parallelograms to elements v of V provides a
parallelogram representation of P .

The next proposition was first observed in [15] and will be useful when we
prove the comparability invariance of membership in class of bounded tolerance
orders. The proof is analogous to that of Proposition 5.

PROPOSITION 6. An ordered set P is a bounded tolerance order if and only if P
is a parallelogram order.

In our proofs of comparability invariance, we need the notion of “scaling down” the
(induced) representation of a subset W of V . This idea is based on a construction
in [12].

Given a parallelogram representation {Pv | v ∈ V } of an order P and a subset
W ⊆ V , we can scale down the parallelograms in the set {Pw | w ∈ W } as follows.
Fix a sufficiently large numberM and translate the parallelograms in {Pw | w ∈ W }
horizontally so that they fit between the lines x = 0 and x = M. To scale down
the representation so that it fits between the lines x = 0 and x = m, map the
point (a, b) of parallelogram Pw to the point ( am

M
, b). Each parallelogram P ′

w in
the resulting set of parallelograms {P ′

w | w ∈ W } still has sides along L1 and
L2 and can be translated horizontally to fit in any space of width m. Note that
for all x and y in W we have Px � Py iff P ′

x � P ′
y However, scaling down

the parallelograms in W can change their comparability with other parallelograms
representing members of V \W , and this will be taken into consideration in our
proof of Theorem 10.

The second special class of bounded bitolerance orders for which we will prove
a comparability invariance result is the class of unit bitolerance orders. An order
P = (V ,≺) is a unit bitolerance order if it has a bounded bitolerance representa-
tion 〈I, p, q〉 in which |Iv| is a constant for all v ∈ V .

An analogous scaling down of some of the intervals in a unit bitolerance rep-
resentation will not result in another unit bitolerance representation. Instead we
use a different representation of unit bitolerance orders which can be scaled down.
A point-core bitolerance order is an order P = (V ,≺) with a bounded bitolerance
representation 〈I, p, q〉 in which p(v) = q(v) for each v ∈ V . In this case, we
denote by f (v) this splitting point f (v) = p(v) = q(v) ∈ Iv. Thus a point-
core bitolerance representation of P = (V ,≺) consists of an assignment to each
v ∈ V , an interval Iv = [L(v), R(v)] and a splitting point f (v) in the open interval
(L(v), R(v)). We denote the representation by 〈I,F 〉 where I = {Iv | v ∈ V }
and F = {f (v) | v ∈ V }. In a point-core representation of P = (V ,≺) we have
x ≺ y iff R(x) < f (y) and f (x) < L(y). This leads us to make the following
remark.
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Remark 7. If P = (V ,≺) is a point-core bitolerance order with representation
〈I,F 〉, then the relation between two elements x and y is completely determined
by the order of the points L(x), f (x), R(x), L(y), f (y), R(y). This allows us to
convert one point-core bitolerance representation of an order P into another by
perturbing endpoints and splitting points, as long as we do not change the order of
these points.

Point-core bitolerance orders are called split interval orders in [6] and their rep-
resentations are called Fishburn representations by [4]. Surprisingly, the classes
of unit bitolerance orders and point-core bitolerance orders are equal, as shown
in [15]. We sketch a proof below.

PROPOSITION 8. A finite ordered set P is a unit bitolerance order iff P is a
point-core bitolerance order.

Proof. Given a unit bitolerance representation 〈I, p, q〉 of P = (V ,≺) in
which Iv = [L(v), R(v)], let L′(v) = p(v), R′(v) = q(v) + R(v) − L(v)
and f ′(v) = R(v) for each v ∈ V . It is easy to check that the intervals I ′

v

and splitting points f ′(v) provide a point-core bitolerance representation of P .
Conversely, given a point-core bitolerance representation of P with interval I ′

v =
[L′(v), R′(v)] and splitting point f ′(v) assigned to v, let L(v) = f ′(v) − M,
q(v) = R′(v) − M, p(v) = L′(v) and R(v) = f ′(v) where M is chosen large
enough so that L(v) < p(v) and q(v) < R(v) for all v. Again, one can check that
this provides a unit bitolerance representation of P . ✷
Given a point-core bitolerance representation 〈I,F 〉 of P = (V ,≺) and a subset
W ⊆ V , we may scale down the intervals and splitting points assigned to elements
of W as follows. Translate the intervals in {Iw | w ∈ W } and the splitting points
{f (w) | w ∈ W } horizontally so that they fit in the interval [0,M] for a sufficiently
large number M. To scale down the representation of elements of W so that it
fits in [0,m], map the intervals and splitting points by a → am

M
so the interval

Iw = [a, b] maps to I ′
w = [ am

M
, bm
M

] and the splitting point f (w) maps to f (w)m

M
. It

is easy to check that these new intervals and splitting points give another point-core
bitolerance representation of (W,≺). We may translate the new representation of
W so that it fits in any interval of width m.

The third special class of bounded bitolerance orders we consider are the unit
tolerance orders, obtained by simultaneously imposing the “unit” and “tolerance”
restrictions. The class of unit tolerance orders are those bounded tolerance orders
P = (V ,≺) with a representation 〈I, t〉 in which |Iv| is constant for all v ∈ V .
Again, if we scale down some (but not all) of the intervals in a unit tolerance
representation, we do not arrive at another unit tolerance representation. So once
again we use different type of representation of the class that will allow this kind
of scaling down.

The 50% tolerance orders are bounded tolerance orders P = (V ,≺) with a
representation 〈I, t〉 in which tv = 1

2 |Iv| for all v ∈ V . Thus a 50% tolerance
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representation is a point-core bitolerance representation in which the splitting point
f (v) lies at the center of the interval Iv for all v ∈ V . As in a point-core bitolerance
representation, x ≺ y iff f (x) < L(y) and R(x) < f (y).

The next proposition appears in [3] and can be proven using the same con-
struction as we used in the proof of Proposition 8. In this instance the “tolerance”
condition ensures that the splitting point of an interval will be located at the center
of that interval.

PROPOSITION 9. A finite ordered set P is a unit tolerance order iff it is a 50%
tolerance order.

Intervals and splitting points in a 50% tolerance order can be scaled down in the
same way we scaled down intervals and splitting points in a point-core bitolerance
representation. If f (w) lies at the center of interval Iw = [a, b], then the new
splitting point f ′(w) = f (w)m

M
lies at the center of the new interval I ′

w = [ am
M
, bm
M

],
and thus the scaled down representation is still a 50% tolerance representation.

2. Main Results

2.1. BOUNDED TOLERANCE ORDERS

Our next result and Lemma 12 are implied by the work of [13]. In that paper, the
authors define tube dimension of an ordered set and prove that tube dimension is a
comparability invariant. Their proof holds for parallelogram orders as well.

THEOREM 10. Let P and Q be ordered sets with the same comparability graph.
Then P is a bounded tolerance order iff Q is a bounded tolerance order.

Proof. By Corollary 4, it suffices to prove the following. If P is a bounded
tolerance order and Q can be obtained from P by an elementary reversal, then Q
is a bounded tolerance order.

Using Proposition 6, we may fix a parallelogram representation of P = (V ,≺),
where each parallelogram in the representation has one side along the horizontal
line L1 and the opposite along the parallel line L2. Let Q be the order obtained
from P by an elementary reversal using the order autonomous set A. Since A is not
an independent set, there exist x, y ∈ Awith x ≺ y. Therefore in the parallelogram
representation of P we have Px � Py .

Add the appropriate constant to each point on line L1 so that parallelogram Px
becomes a rectangle (geometrically this is equivalent to moving the line L1 to the
left or right until Px becomes a rectangle). This provides another parallelogram
representation {P ′

v | v ∈ V } of P in which there is a rectangle R of width ε > 0
that lies strictly between P ′

x and P ′
y .

As discussed in Section 1.2, we may scale down and translate the parallelo-
gram representation of A in the horizontal direction so that it fits inside R (but
each parallelogram still has sides on L1 and L2). Reflect these parallelograms
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about the vertical line bisecting R and denote by P ′′
a the new parallelogram as-

signed to a ∈ A and let P ′′
v = P ′

v for all v ∈ V \A. Let P1 = (V ,≺1) be
the ordered set with this parallelogram representation. Our goal is to show that
P1 = Q.

The reflection serves to reverse all the comparabilities between elements of A
as desired. It remains to show that the reflection leaves all other comparabilities
and incomparabilities of P intact. Since P ′′

v = P ′
v for all v ∈ V \A, we need only

consider pairs of elements where one element is in A and the other is not. By
Remark 1, we know V \A = Pred(A) ∪ Succ(A) ∪ Inc(A).

For all u ∈ Pred(A) we have u ≺ x so P ′′
u = P ′

u � P ′
x � R. Since the

parallelograms representing elements of A are located inside R we have P ′′
u � P ′′

a

hence u ≺1 a for all a ∈ A. Similarly, for all w ∈ Succ(A) we have y ≺ w so
R � P ′

y � P ′
w = P ′′

w and thus a ≺1 w for all a ∈ A. Finally, for all z ∈ Inc(A),
the parallelogram P ′′

z = P ′
z intersects both P ′

x and P ′
y and thus it intersects every

line segment which lies entirely between P ′
x and P ′

y and has one endpoint on L1

and the other on L2. The left edge of P ′′
a is such a line segment for each a ∈ A.

Thus P ′′
z ∩ P ′′

a �= ∅ for all a ∈ A, so z‖a in P1 for all a ∈ A. Therefore the
new set of parallelograms gives a parallelogram representation ofQ as desired. By
Proposition 6, Q is a bounded tolerance order. ✷

2.2. UNIT BITOLERANCE AND UNIT TOLERANCE ORDERS

In this section we show that the property of being a unit bitolerance order and
the property of being a unit tolerance order are comparability invariants. As men-
tioned before, we will use the alternate characterizations of these classes. We first
introduce the material common to both proofs.

Since the orders are finite, one can show that interval endpoints and splitting
points in tolerance representations can be perturbed slightly so that they are dis-
tinct. We record the relevant cases below.

Remark 11. Any point-core bitolerance order has a representation in which all
interval endpoints and splitting points are distinct. Any 50% tolerance order has a
representation in which interval endpoints are distinct.

LEMMA 12. Let P = (V ,≺) be a point-core bitolerance order with a repre-
sentation in which element v is assigned interval Iv = [L(v), R(v)] and splitting
point f (v). Let Q be obtained from P by an elementary reversal using the order
autonomous set A. If there exist x, y ∈ A with x ≺ y and R(x) < L(y), then Q
is a point-core bitolerance order. Moreover, if P is a 50% tolerance order then so
isQ.

Proof. Let S be the interval [R(x), L(y)]. Each v ∈ Pred(A) has v ≺ x and
thus R(v) < f (x) < R(x). Similarly, each w ∈ Succ(A) has y ≺ w and thus
L(y) < f (y) < L(w). For each z ∈ Inc(A) the interval Iz must intersect Ix and
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Iy , thus L(z) ≤ R(x) and R(z) ≥ L(y). This means that all intervals assigned
to elements in Pred(A) are completely to the left of S, all intervals assigned to
elements in Succ(A) are completely to the right of S, and all intervals assigned to
elements in Inc(A) completely contain S.

As discussed in Section 1.2, scale down those intervals representing elements
of A so that the entire representation of A fits inside S. Next, reflect the intervals
representing elements ofA about the midpoint of S. The reflection serves to reverse
all comparabilities in A while keeping the intervals assigned to elements in A
entirely inside S. This has the desired effect of leaving all other comparabilities
and incomparabilities in P intact. Thus the new set of intervals and splitting points
provides a point-core bitolerance representation of Q. To justify the final sentence
of the lemma, note that if the original representation of P was a 50% tolerance
representation, then so is the final representation. ✷

LEMMA 13. Let P = (V ,≺) be a point-core bitolerance order with a represen-
tation in which element v ∈ V is assigned the interval Iv = [L(v), R(v)] and the
splitting point f (v). Let Q be obtained from P by an elementary reversal of the
autonomous setA. Further, suppose that R(x) ≥ L(y) for all x, y ∈ A with x ≺ y.
Then

(i) there exists an interval S with S ⊆ Ia for all a ∈ A,
(ii) for every v ∈ Pred(A) the interval Iv is completely to the left of S,

(iii) for every w ∈ Succ(A) the interval Iw is completely to the right of S, and
(iv) for every z ∈ Inc(A) we have either S ⊆ Iz or f (z) ∈ S.

Proof. By Remark 11 we may assume that the endpoints of the intervals in
{Iv | v ∈ V } are distinct. By the hypothesis that R(x) ≥ L(y) for all x, y ∈ A
with x ≺ y, we have Iu ∩ Iv �= ∅ for any pair u, v of comparable elements in A.
Also the intervals representing any pair of incomparable elements in A certainly
have nonempty intersection. Thus Iu ∩ Iv �= ∅ for every pair u, v ∈ A. By the
Helly property of intervals, there is a common intersection point for all the intervals
assigned to elements of A. Since we have assumed interval endpoints are distinct,
we know there exists an interval S = [s1, s2] with S ⊆ Ia for all a ∈ A. This
establishes (i).

By Remark 2 we may assume that every element of A is comparable to another
element of A. In particular, this means that for each a ∈ A, we have f (a) /∈ S.
If there were an element a ∈ A for which L(a) = s1 and R(a) = s2 then
f (a) ∈ S, contradicting our last assertion. By taking S to have maximum pos-
sible size, we may assume that there exist distinct x, y ∈ A with R(x) = s2
and L(y) = s1. Furthermore since f (x) /∈ S, we have f (x) < s1 = L(y) and
since f (y) /∈ S, we have f (y) > s2 = R(x), so x ≺ y. Every v ∈ Pred(A)
satisfies v ≺ x and thus R(v) < f (x) < s1. So Iv is completely to the left of S
for all V ∈ Pred(A), proving (ii). Every w ∈ Succ(A) satisfies y ≺ w and thus
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s2 < f (y) < L(w). So Iw is completely to the right of S for all w ∈ Succ(A),
proving (iii).

Finally, we show (iv). Assume z ∈ Inc(A) and S �⊆ Iz. We need to show f (z) ∈
S, so for a contradiction we first assume f (z) < s1. In this case, f (z) < s1 =
L(y) but since u||y we must have R(z) > f (y). However, f (z) < s1 < s2 <
f (y) < R(z), so S ⊆ Iz, contradicting our original assumption. We get a similar
contradiction if we assume f (z) > s2. Thus f (z) ∈ S and this establishes (iv). ✷
THEOREM 14. Let P and Q be finite ordered sets with the same comparability
graph. Then P is a unit bitolerance order iff Q is a unit bitolerance order.

Proof. By Corollary 4, it suffices to prove the following: If P is a unit bitoler-
ance order and Q can be obtained from P by an elementary reversal, then Q is a
unit bitolerance order.

Using Proposition 8, fix a point-core bitolerance representation of P = (V ,≺)
in which v ∈ V is assigned the interval Iv = [L(v), R(v)] and splitting point f (v)
with L(v) < f (v) < R(v). By Remark 11 we may assume that the endpoints of
these intervals and the splitting points are distinct. Let Q = (V ,≺′) be the order
which is obtained from P by an elementary reversal using the order autonomous
set A. By Remark 1, the sets Pred(A), Succ(A), and Inc(A) partition V \A.

Case 1. There exist x, y ∈ A with x ≺ y and R(x) < L(y).
By Lemma 12,Q is a point-core bitolerance order, and hence a unit bitolerance

order as desired.
Case 2. For all x, y ∈ A with x ≺ y we have R(x) ≥ L(y).
In this case, Lemma 13 applies, so we know (i) there exists a real interval S =

[s1, s2] with S ⊆ Ia for all a ∈ A, (ii) for every v ∈ Pred(A) the interval Iv is
completely to the left of S, (iii) for everyw ∈ Succ(A) the interval Iw is completely
to the right of S, and (iv) for every z ∈ Inc(A) we have either S ⊆ Iz or f (z) ∈ S.

Now choose a point h ∈ S which is different from all splitting points in the
representation of P . Reflect each interval assigned to an element of A about h and
denote the resulting interval for a by I ′

a = [L′(a), R′(a)] and the new splitting
point by f ′(a). Since S ⊆ Ia we have L′(a) < h < R′(a) for each a ∈ A. The
reflection serves to reverse all comparabilities in A. However, this reflection may
affect other comparabilities between elements in A and elements in V \A, and so
we will make a further adjustment to the intervals in A. Our goal is to create new
intervals {I ′′

a | a ∈ A} so that each I ′′
a contains S and is contained in an interval

slightly larger than S.
Choose ε > 0 sufficiently small so that there are no endpoints of intervals or

center points within ε of s1 and s2. Thus the intervals Iv which contain S also
contain the larger interval [s1 − ε, s2 + ε].

Consider the set (L′(a) | a ∈ A} ∪ {f ′(a) | a ∈ A} ∪ {R′(a) | a ∈ A}
and create a new representation by sliding these points so that (i) the ordering
of these points is maintained, (ii) any point less than h ends up in the interval
[s1 − ε, s1], and (iii) any point greater than h ends up in the interval [s2, s2 + ε].
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By (i) and Remark 7, this will not disturb the comparabilities among elements inA.
The new interval assigned to a ∈ A, denoted by I ′′

a , will contain S for each a ∈ A,
and is contained in the slightly larger interval [s1 − ε, s2 + ε].

Now for each v ∈ Pred(A) and each a ∈ A we have Iv � I ′′
a , thus v ≺ a

in the new representation. For each w ∈ Succ(A) we have I ′′
a � Iw for each

a ∈ A, thus a ≺ w in the new representation. For each z ∈ Inc(A) we have either
I ′′
a ⊆ [s1 − ε, s2 + ε] ⊆ Iz or f (z) ∈ S ⊆ I ′′

a for each a ∈ A. In either case,
z||a in the new representation. So the original intervals and splitting points for
elements in V \A together with the new intervals and splitting points for elements
of A gives a point-core bitolerance representation of Q. By Proposition 8, Q is a
unit bitolerance order. ✷

THEOREM 15. Let P and Q be finite ordered sets with the same comparability
graph. Then P is a unit tolerance order iff Q is a unit tolerance order.

Proof. By Corollary 4, it suffices to prove the following: if P is a unit tolerance
order and Q can be obtained from P by an elementary reversal, then Q is a unit
tolerance order.

We proceed by induction. The theorem is easy to check for orders with three or
fewer elements. Assume the result is true for orders with fewer than n elements,
and let P = (V ,≺) be a unit tolerance order with |X| = n. Let Q be the order
which is obtained from P by an elementary reversal using the order autonomous
set A.

Fix a 50% tolerance representation of P in which v ∈ V is assigned interval
Iv = [L(v), R(v)] with splitting point f (v) = 1

2(L(v) + R(v)) and tolerance
tv = f (v) − L(v) = R(v) − f (v) = 1

2 |Iv|. By Remark 11, we may assume that
the endpoints of these intervals are distinct.

By definition of a 50% tolerance representation, x ≺ y iff f (x) < L(y) and
R(x) < f (y). By Remark 1, the sets Pred(A), Succ(A), and Inc(A) partition V \A.

Case 1. There exist x, y ∈ A with x ≺ y and R(x) < L(y).
By Lemma 12, Q is a 50% tolerance order, and hence a unit tolerance order as

desired.
Case 2. For all x, y ∈ A with x ≺ y we have R(x) ≥ L(y).
In this case, Lemma 13 applies, so we know (i) there exists a real interval S =

[s1, s2] with S ⊆ Ia for all a ∈ A, (ii) for every v ∈ Pred(A) the interval Iv is
completely to the left of S, (iii) for everyw ∈ Succ(A) the interval Iw is completely
to the right of S, and (iv) for every z ∈ Inc(A) we have either S ⊆ Iz or f (z) ∈ S.

Partition Inc(A) as IC(A)∪ IN(A), where IC(A) = {z ∈ Inc(A) | S ⊆ Iz} is the
set of elements incomparable to A whose intervals “cover” S and IN(A) = {u ∈
Inc(A) | S �⊆ Iu} is the set of elements incomparable to A whose intervals do not
“cover” S. By condition (iv) we know f (u) ∈ S for all u ∈ IN(A). If IN(A) = ∅
then the argument in the second paragraph of the proof of Lemma 12 applies and
we conclude that Q is a unit tolerance order.
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Figure 1. A figure to accompany the proof of part (b) of the claim.

Otherwise IN(A) �= ∅. As noted above, f (u) ∈ S, that is, s1 ≤ f (u) ≤ s2 for
all u ∈ IN(A). Here our proof diverges from that of Theorem 14 since we can not
slide the splitting points f (a) without disturbing the property that they lie in the
centers of their intervals.

CLAIM. The set A ∪ IN(A) is an order autonomous set of P .

Proof. To prove the claim it suffices to show that for any u ∈ IN(A) and any
v ∈ V \(A ∪ IN(A)), the relation between u and v is the same as the relation
between a and v for any a ∈ A. Thus for z ∈ Ic(A), v ∈ Pred(A), andw ∈ Succ(A)
we will show

(a) u||z,
(b) v ≺ u, and
(c) u ≺ w.

Fix elements u ∈ IN(A), z ∈ IC(A), v ∈ Pred(A), w ∈ Succ(A), and in
addition fix elements x, y ∈ A with x ≺ y. To prove (a) we note that f (u) ∈ S ⊆
Iz, so u||z.

We next prove (b). By the definition of S = [s1, s2] we know L(x), L(y) ≤ s1
and s2 ≤ R(x), R(y) (see Figure 1). Since x ≺ y we have f (z) < L(y) ≤ s1 and
s2 ≤ R(x) < f (y). Also, since v ∈ Pred(A) and x ∈ A we have v ≺ x so

R(v) < f (x) < L(y) ≤ s1 < f (u). (1)

We wish to show f (v) < L(u), which together with R(v) < f (u) from (1) would
imply v ≺ u and prove (b). Suppose for a contradiction that L(u) ≤ f (v) (as
shown by the dashed line of Iu in Figure 1). Since v ≺ x we have f (v) < L(x)
so L(u) < L(x). By (1) we have f (x) < f (u). Because we have a 50% tolerance
representation, the splitting points f (x) and f (u) lie at the centers of their re-
spective intervals, so 1

2 (L(x) + R(x)) = f (x) < f (u) = 1
2(L(u) + R(u)) <

1
2(L(x) + R(u)), and thus R(u) > R(x). But then L(u) < L(y) ≤ s1 and
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s2 ≤ R(x) < R(u), which means S ⊆ Iu, contradicting the fact that u ∈ IN(A).
This completes the proof of (b). A similar argument shows (c) and finishes the
proof of the claim.

Case 2a. V �= A ∪ IN(A). In this case, the order P1, induced in P by the
elements in A ∪ IN(A) is a 50% tolerance order with fewer than n elements.
Furthermore, A is an order autonomous set in P1. By the induction hypothesis we
may fix a 50% tolerance representation of the order resulting from P1 by reversing
all comparabilities in A. As discussed in Section 1.2, scale down and translate this
representation so that it fits entirely in S and place it there. This representation
captures the comparabilities and incomparabilities between elements of A∪ IN (A)
inQ. We leave the intervals representing elements of V \(A∪ IN(A)) intact, so our
representation gives the correct order relations between elements of V \(A∪IN (A))
in Q. By (ii), (iii) and the definition of Ic(A), our representation also realizes the
comparabilities and incomparabilities between elements of A ∪ IN(A) and ele-
ments of V \(A ∪ IN(A)) in Q. Therefore, Q is a 50% tolerance order and by
Proposition 9, Q is a unit tolerance order.

Case 2b. V = A ∪ IN(A). In this case, reflect each interval in A about the
midpoint of S in order to reverse the comparabilities inA. Let I ′

a be the new interval
assigned to a ∈ A. Recall that S ⊆ Ia for all a ∈ A by condition (i) of case 2. Since
I ′
a results from reflecting Ia about the midpoint of S, we also have S ⊆ I ′

a for all
a ∈ A. By condition (iv) of case 2, we have f (u) ∈ S for all u ∈ IN(A), thus u||a
for all a ∈ A as desired. This new representation is a 50% tolerance representation
ofQ when V = A ∪ IN(A), so by Proposition 9, Q is a unit tolerance order. ✷
3. Conclusion

Classes of tolerance orders are often studied from the perspective of graph theory
and indeed the original definition in [8] is in terms of graphs. In our notation, a
graph G = (V ,E) is a bounded bitolerance graph if there is a bounded bitolerance
representation of an order P = (V ,≺), whereG is the incomparability graph of P .
Thus if G is a bounded bitolerance graph, then by definition there exists an order
P , where G is the incomparability graph of P and P is a bounded bitolerance
order. Once we know that membership in the class of bounded bitolerance orders
is a comparability invariant, we can make the stronger statement that every order P
whose incomparability graph isG is a bounded bitolerance order. Similar reasoning
applies to the three classes of orders about which we have proven comparability
invariance results in this paper.

For a comprehensive treatment of tolerance graphs and orders, the reader is
refered to [9].
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