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Abstract

We define three new pebbling parameters of a connected graph G, the r-, g-, and u-

critical pebbling numbers. Together with the pebbling number, the optimal pebbling

number, the number of vertices n and the diameter d of the graph, this yields 7

graph parameters. We determine the relationships between these parameters. We

investigate properties of the r-critical pebbling number, and distinguish between

greedy graphs, thrifty graphs, and graphs for which the r-critical pebbling number

is 2d.
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1 Pebbling Numbers

Let G be a connected graph. A pebbling distribution (or simply distribution)

D on G is a function which assigns to each vertex of G a natural number of

pebbles. If D is a distribution on a graph G and a is a vertex of G, we denote

by D(a) the number of pebbles on a in the distribution D. The size of the

distribution D is the number of pebbles in D, |D| = ∑
a∈V (G)D(a).

A pebbling step [a, b] is an operation which takes the distribution D, removes

two pebbles from the vertex a, and adds one pebble at the adjacent vertex

b. A distribution D is r-solvable if there exists a sequence of pebbling steps

starting with D and ending with at least one pebble on the vertex r, and

solvable if D is r-solvable for all r. A distribution D is unsolvable if there is

some vertex r for which D is not r-solvable. The pebbling number p(G) of G

is the minimum number such that any distribution on G with p(G) pebbles is

solvable [Hur99]. For example, since the first distribution on the graph C7 in

Figure 1 is unsolvable, p(C7) > 10. In fact, p(C7) = 11 [Hur99].
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Fig. 1. Five pebbling distributions on the graph C7.

A rooted distribution is a distribution which also identifies a vertex r of G as the

root vertex of G. As before, we say that the rooted distribution D is solved if it

has at least one pebble on r, and solvable if there exists a sequence of pebbling

steps starting with D and ending with a solved distribution. If such a sequence

exists, we call it a solution of D. Note that for a rooted distribution, the terms

solvable and r-solvable are interchangeable. In general, any statement about a

distribution D on a graph G can applied to a corresponding rooted distribution

E as well, obtained from D by choosing a root of G. For emphasis, we say

that an un-rooted distribution is a global distribution.

A rooted distribution D is minimally r-solvable if D is r-solvable but the

removal of any pebble makes D not r-solvable. A rooted distribution D is

maximally r-unsolvable if D is not r-solvable but the addition of any pebble

makes D r-solvable. A global distribution D is minimally solvable if D is solv-

able but the removal of any pebble makes D unsolvable. A global distribution
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D is maximally unsolvable if D is unsolvable but the addition of any pebble

makes D solvable.

For example, the first distribution in Figure 2 is minimally solvable as a global

distribution, since the deletion of any pebble makes it unsolvable to some root.

However, it is not minimally r-solvable for any choice of a root r, since once a

root is selected four pebbles can be deleted from the distribution while keeping

it solvable.

1 1

1 1

4

1

r

Fig. 2. Two pebbling distributions on the graph K2,3.

The eight combinations of largest or smallest, solvable or unsolvable, and

rooted or global distributions yield the following five pebbling-related param-

eters on a graph. Two pairs of these combinations yield the same parameter,

and one combination turns out to be trivial, as noted below. The remaining

parameters are all different, as shown in Table 1.

• The pebbling number p(G) is one greater than the largest size of a maximally

unsolvable global distribution on G. Equivalently, p(G) is one greater than

the largest size of a maximally r-unsolvable rooted distribution on G for

any r.

For example, the first distribution in Figure 1 is maximally unsolvable,

since the addition of any one pebble results in a solvable distribution. Since

there are no maximally unsolvable distributions on C7 with 11 pebbles,

p(C7) = 11.

• The gu-critical pebbling number cgu(G) is one greater than the smallest

size of a maximally unsolvable global distribution on G. The ru-critical

pebbling number cru(G) is one greater than the smallest size of a maximally

r-unsolvable rooted distribution on G for any r. These two parameters are

equal, as proven in Lemma 1. Consequently, we define cu(G) = cru(G) =

cgu(G).

For example, the fourth distribution in Figure 1 is maximally unsolvable,

and there are no maximally unsolvable distributions on C7 with fewer than

6 pebbles. So cu(C7) = 7.

• The g-critical pebbling number cg(G) is the largest size of a minimally solv-

able global distribution on G.
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For example, the second distribution in Figure 1 is minimally solvable,

since the deletion of any pebble makes it unsolvable. Since there are no mini-

mally solvable distributions on C7 with greater than 10 pebbles, cg(C7) = 10.

In particular, the third distribution in Figure 1 is not minimally solvable,

since removing a pebble from the vertex with 5 pebbles results in a solvable

distribution.

• The r-critical pebbling number cr(G) is the largest size of a minimally r-

solvable rooted distribution on G for any r. If a minimally r-solvable rooted

distribution on G has cr(G) pebbles, then we call it an r-ceiling distribution.

For example, the second distribution in Figure 2 is minimally r-solvable.

Since there is no minimally r-solvable rooted distribution on K2,3 with

greater than 4 pebbles, cr(K2,3) = 4. In particular, as discussed above,

the first distribution in Figure 2 is not minimally r-solvable for any r.

• The optimal pebbling number o(G) is the smallest size of a minimally solv-

able global distribution on G [PSV95].

For example, the fifth distribution in Figure 1 is minimally solvable, and

there are no minimally solvable distributions on C7 with fewer than 5 peb-

bles. So o(C7) = 5.

• The smallest size of a minimally r-solvable distribution on G is 1 for any

connected graph G, so we do not consider it.

The following is another helpful way of thinking of these pebbling parameters.

Consider the set of all global distributions on a given graph G. Given the

distributions D and E, we say that D ≤ E if D(a) ≤ E(a) for all vertices a

in G. With this ordering, the set of all distributions on G becomes a lattice.

Also note that if D ≤ E then |D| ≤ |E|.

Now divide the distributions in this lattice into the subset S of solvable dis-

tributions and the subset U of unsolvable distributions, and also consider the

set M of maximal unsolvable distributions and the set m of minimal solvable

distributions. The pebbling number, g-critical pebbling number, u-critical peb-

bling number, and optimal pebbling number can be viewed as maxima and

minima of these subsets. Specifically:

• The pebbling number is one greater than the largest size of any distribution

in M .

• The u-critical pebbling number is one greater than the smallest size of any

distribution in M .
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• The g-critical pebbling number is the largest size of any distribution in m.

• The optimal pebbling number is the smallest size of any distribution in m.

Figure 3 shows a schematic drawing of these maxima and minima.

p(G)

cg(G)

cu(G)

o(G)

unsolvable
distributions

solvable
distributions

Fig. 3. The lattice of pebbling distributions of a graph.

The r-, g-, and u-critical pebbling numbers have not been previously stud-

ied. We now investigate the relationships between the five distinct pebbling

numbers defined above.

Lemma 1 For any graph G, cru(G) = cgu(G).

Proof. By definition, every maximally unsolvable distribution on G is maxi-

mally r-unsolvable for some r.

Let r be a vertex of G. It suffices to show that every maximally r-unsolvable

distribution is maximally unsolvable. Let D be a maximally r-unsolvable dis-

tribution on G, and assume by way of contradiction that D is not maximally

unsolvable. Since D is r-unsolvable, D is unsolvable. Since D is not maxi-

mally unsolvable, there exists a vertex s of G such that D is s-unsolvable, and

a pebble can be added to D so that D remains s-unsolvable. Hence, s 6= r.

Consider the distribution E obtained from D by adding a pebble on s. Since D

is s-unsolvable, no second pebble from E can be moved to s. So any solution of

E to r does not use the pebble on s. But this means that E is not r-solvable,

which contradicts the fact that D is maximally r-unsolvable. �

Lemma 2 Suppose that G is a graph with n vertices and diameter d. Then

(1) o(G) ≤ 2d.
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(2) 2d ≤ cr(G).

(3) cr(G) ≤ cg(G).

(4) o(G) ≤ cu(G).

(5) cu(G) ≤ n.

(6) n ≤ cg(G).

(7) cg(G) ≤ p(G).

Proof.

(1) The proof appears in [PSV95].

(2) Let a and b be two vertices which are distance d apart. Let D be the rooted

distribution with a = r and D(b) = 2d. This distribution is minimally

r-solvable, and consequently 2d ≤ cr(G).

(3) Case 1: There exists an r-ceiling distribution D on G which is

not solvable. Suppose D is not solvable to the vertex s. Consider the

distribution D1 obtained from D by adding a pebble at s. Since D is not

solvable to s, the new pebble cannot be used in a solution of D1 to r.

Hence if we remove any pebble in D1, either D1 is no longer solvable to

r, or D1 is no longer solvable to s. Either D1 is solvable, or D1 is not

solvable to some vertex t. In this second case we form the distribution D2

by adding a pebble at t to D1. Continuing in this way, we eventually arrive

at a minimally solvable distribution E which contains all the pebbles in

D and some additional pebbles. Since cr(G) = |D| and cg(G) ≥ |E|,
cr(G) ≤ cg(G).

Case 2: All r-ceiling distributions on G are solvable. Every r-

ceiling distribution is minimally r-solvable, and hence minimally solvable.

Since cr(G) is the maximum size of an r-ceiling distribution and cg(G) is

the maximum size of a minimally solvable distribution, cr(G) ≤ cg(G).

(4) Because cu(G) is one larger than the size of a maximally unsolvable dis-

tribution, there exists a solvable distribution with cu(G) pebbles. Since

o(G) is the size of the smallest solvable distribution on G, o(G) ≤ cu(G).

(5) Any distribution on the graph G with one pebble on all but one vertex is

maximally unsolvable. Since cu(G) is one greater than the smallest such

distribution, cu(G) ≤ n.

(6) The distribution with one pebble on every vertex of G has n pebbles and is

minimally solvable. Since cg(G) is the size of the largest such distribution,

n ≤ cg(G).

(7) By the definition of p(G), every distribution with p(G) or more pebbles is

6



solvable. By the definition of cg(G), there exist distributions with cg(G)−1

pebbles which are not solvable. �

K5 K2,3 C7

p(G) 5 5 11

cg(G) 5 5 10

cr(G) 2 4 10

2d 2 4 8

n 5 5 7

cu(G) 5 4 7

o(G) 2 3 5

Table 1. Some pebbling numbers.

Table 1 shows the values of the five pebbling parameters for three graphs.

The table illustrates that the inequalities in Lemma 2 can be either strict or

not, and that there is no definite relationship between the remaining pairs

of pebbling parameters. For instance, cr(K5) < cu(K5), but cr(C7) > cu(C7).

The proof that p(C7) = 11 appears in [Hur99], and we prove cr(C7) = 10 in

Lemma 17 below. Since the remainder of the paper focuses on cr(G), we leave

the rest of the values for the reader to verify.

We summarize the relationships between these seven values in the lattice in

Figure 4. In this figure, an upward-slanting edge indicates that the lower value

is less than or equal to the upper value for all graphs, and a missing edge

indicates that each value may be greater than the other on some graphs.

Finally, note that for the graph with a single vertex, all seven values are

equal.

2 The r-Critical Pebbling Number

For the remainder of the paper, we focus on the r-critical pebbling number.

We say that a minimally r-solvable rooted distribution is an r-critical distri-
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p(G)

ncr(G)

cg(G)

o(G)

2d cu(G)       

Fig. 4. The relationships between the five pebbling parameters.

bution, so cr(G) is the maximum size of an r-critical distribution on G. Recall

that the r-critical distributions on G with cr(G) pebbles are called r-ceiling

distributions.

We say that the rooted distribution D is r-excessive if D is r-solvable and

not r-critical, and r-insufficient if D is not r-solvable. Then the sets of r-

insufficient, r-critical, and r-excessive distributions on G form a partition of

all rooted distributions on G. Note that for an r-insufficient distribution I,

an r-critical distribution C, and an r-excessive distribution E, we may have

|E| < |C| < |I|. Examples of three such distributions are shown in Figure 5.

r

r

r

3

4

5

E

C

I

Fig. 5. Three rooted distributions on the graph P4.

We say that a solution of the rooted distribution D is r-critical if it leaves one

pebble on r and no pebble on any other vertex.

Lemma 3 A rooted distribution D is r-critical if and only if D is r-solvable

and all solutions of D are r-critical.

Proof. Suppose D is r-critical. Then by definition D is r-solvable. Suppose

there exists a solution S of D which is not r-critical. Then S leaves a pebble

on the non-root vertex a. If this pebble is unmoved from D, we may delete

it from D and obtain an r-solvable rooted distribution, which contradicts the

fact that D is r-critical. So S must include the pebbling step [b, a] for some

other vertex b. Again, if a pebble on b is unmoved from D until this pebbling

step, then D would not be r-critical. We continue in this way. Since S is a

finite sequence of pebbling steps, eventually we will find a pebble in D which

may be deleted to obtain an r-solvable rooted distribution. Hence, all solutions
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of D are r-critical.

Conversely, suppose D is r-solvable and all solutions of D are r-critical. Let E

be a rooted distribution obtained by removing a pebble from D, and suppose

that E is r-solvable. Then there exists a solution of D which leaves this pebble

unmoved. So this solution is not r-critical, which is a contradiction. Therefore,

D must be r-critical. �

Corollary 4 If D is r-critical and a is a vertex of G with degree 1 distinct

from r, then D(a) is even.

Proof. Suppose D(a) is odd, and S is a solution of D. If [b, a] is a pebbling step

in S, then [a, b] must also be a pebbling step in S. Removing both pebbling

steps from S results in a non-r-critical solution of D, so D is not r-critical by

Lemma 3. Alternatively, if there are no pebbling steps in S of the form [b, a],

then S leaves at least one pebble on a. So S is not r-critical, and again by

Lemma 3, D is not r-critical. �

Lemma 5 Suppose that G is a graph and a is a vertex of G which is adjacent

to every other vertex of G. Then the r-critical distributions on G must have

one of the following forms:

(1) One pebble on r, and no pebble on any other vertex.

(2) Two pebbles on a, and no pebble on any other vertex.

(3) Four pebbles on some vertex b 6= a, and no pebble on any other vertex.

(4) Two pebbles on two vertices b and c, both different from a, and no pebble

on any other vertex.

(5) Two pebbles on some vertex b 6= a, and less than two pebbles on all other

vertices.

Proof. Suppose D is an r-critical distribution on G, and b and c are vertices

in G other than a. If D has either one pebble on r, or two pebbles on a, or four

pebbles on b, or two pebbles on both b and c, then D must have no pebbles

on any other vertex. Alternatively, suppose that none of these conditions are

met. In this case, D has no pebbles on r, less than two pebbles on a, less than

four pebbles on any other vertex, and more than one pebble on at most one

vertex.

If D has more than one pebble on no vertex, then D is r-insufficient. So
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without loss of generality, 2 ≤ D(b) < 4 and D(v) < 2 for all other vertices v

in G. If D(b) = 3 then any solution of D will leave at least one pebble on b,

and D will not be r-critical. So D must have form 5. We have shown that all

r-critical distributions on G must have one of the five forms listed. �

Theorem 6 The star K1,n has pebbling number n + 2 and r-critical pebbling

number 4 for n ≥ 4.

Proof. The fact that p(K1,n) = n + 2 is a corollary of Theorem 4 of [Moe92],

which gives a formula for the pebbling number of any tree.

By Lemma 2, cr(K1,n) ≥ 4. By Lemma 5, the only r-critical distributions on

K1,n with more than four pebbles must have two pebbles on one vertex, and

one pebble on at least three other vertices. But by Lemma 4, there is only one

vertex in K1,n which can have one pebble in an r-critical distribution. Hence

cr(K1,n) = 4. �

Note that Lemma 2 gives us cr(G) ≤ p(G) for any graph G. But in fact,

Theorem 6 gives an example of a family of graphs for which the difference

p(G)− cr(G) is arbitrarily large.

Recall the fan Fk, the path Pk on k vertices with an additional vertex x

adjacent to every vertex in Pk. F8 is shown in Figure 6.

r2 111111 r3 11111

x x

Fig. 6. An r-ceiling distribution and an r-insufficient distribution on the fan F8.

Theorem 7 The fan Fk has pebbling number k + 1 for k ≥ 4.

Proof. Consider a rooted distribution D on Fk with k + 1 pebbles. If D has

at least 4 pebbles on any vertex, or at least 2 pebbles on each of any two

vertices, or at least 2 pebbles on x, or at least 2 pebbles on any vertex and

one pebble on x, then D is r-solvable. The only remaining case is that D has

3 pebbles on one vertex and one pebble on k − 2 other vertices, which are

neither x nor r. So D has pebbles on every vertex of the path Fk − x other

than r, with 3 pebbles on one of them, so D is again r-solvable. This implies

that p(Fk) ≤ k + 1.
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The second rooted distribution shown in Figure 6 has k pebbles and is r-

insufficient, and consequently p(Fk) = k + 1. �

Theorem 8 The fan Fk has r-critical pebbling number k for k ≥ 4.

Proof. We first prove that cr(Fk) ≤ k. Let D be an r-critical distribution

on Fk with more than k pebbles. Since k ≥ 4, by Lemma 5, D must have

two pebbles on one vertex and one pebble on at least k − 1 other vertices.

Therefore, either r has a pebble on it, or r = x, or x has a pebble on it. In

each of these cases, one can easily check that D is r-excessive. Thus, there are

no r-critical distributions on Fk with more than k pebbles.

The first rooted distribution shown in Figure 6 is r-critical as long as k ≥ 4,

and has k pebbles. It follows that cr(Fk) = k for k ≥ 4. �

Corollary 9 There exist graphs with r-critical pebbling number k for all pos-

itive integers k 6= 3.

Proof. For k = 1, 2, the path Pk has r-critical pebbling number k. For k ≥ 4,

the fan Fk has r-critical pebbling number k by Theorem 8.

Now suppose that D is a rooted distribution on the graph G with 3 pebbles. We

show that D is not an r-ceiling distribution. If there is no vertex a with D(a) ≥
2, then there are no legal pebbling steps from D, and D is r-insufficient. If

there is such a vertex, and a is adjacent to every other vertex of G, then two

pebbles from a can be used to pebble to r, and D is r-excessive. If a is not

adjacent to some other vertex of G, then d(G) ≥ 2, so cr(G) ≥ 4. Hence, there

is no r-ceiling distribution with three pebbles. �

Also note that Fk is an example of a graph with diameter 2 and arbitrarily

large r-critical pebbling number. Thus, cr(G) is not bounded above by any

function of d(G). So, although lower bounds for cr(G) do not involve n, it

seems that upper bounds for cr(G) must.

3 Greed, Thrift, and Weight

We denote the distance between the vertices a and b by d(a, b). The pebbling

step [a, b] is greedy if d(a, r) > d(b, r); in other words, the step moves towards
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the root. The rooted distribution D is greedy if there is a solution of D which

uses only greedy pebbling steps. The graph G is greedy if every distribution

with at least p(G) pebbles is greedy [Hur99]. The graph G is thrifty if every

r-critical distribution with at least cr(G) pebbles (i.e. every r-ceiling distribu-

tion) is greedy.

In general, the pebbling number of a graph is algorithmically hard to compute.

However, Hurlbert notes that for greedy graphs, the computation becomes

much easier [Hur99]. For thrifty graphs, the r-critical pebbling number is even

easier to compute. As we shall see below, the r-critical pebbling number of a

thrifty graph is determined by its diameter.

The weight of the rooted distribution D is the value

w(D) =
∑

v∈V (G)

D(v)

2d(v,r)
.

The weight w(G) of G is the largest weight of any r-ceiling distribution on

G. Note that there may be r-critical distributions with fewer pebbles and

larger weight, for example, given any rooted graph G, the distribution with

two pebbles on one vertex adjacent to r has weight 1. We are interested only

in the weight of r-critical distributions with exactly cr(G) pebbles.

Lemma 10 If the rooted distribution E is obtained from the rooted distribu-

tion D by a greedy pebbling step, then w(E) = w(D). If the rooted distribution

E is obtained from the rooted distribution D by a non-greedy pebbling step,

then w(E) < w(D).

Proof. Suppose E is obtained from D by the pebbling step [a, b]. If [a, b] is

greedy and d(a, r) = s, then d(b, r) = s− 1. E has two fewer pebbles on a and

one additional pebble on b. So w(E) = w(D)− 2
2s

+ 1
2s−1 = w(D).

If [a, b] is not greedy and d(a, r) = s, then d(b, r) = t ≥ s. So w(E) =

w(D)− 2
2s

+ 1
2t

< w(D). �

Lemma 11 If D is r-critical and greedy then w(D) = 1.

Proof. We proceed by induction. The only r-critical distribution on G with

size 1 is the rooted distribution with one pebble on r and no pebble on any

other vertex. This rooted distribution is r-critical, greedy, and has weight 1

on every graph G.
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Suppose that D is an r-critical, greedy distribution on G with k pebbles. Since

D is greedy, there exists a greedy pebbling step [a, b] from D to a new rooted

distribution E with k − 1 pebbles which is the first pebbling step in a greedy

solution of D.

If E is not r-critical, then by Lemma 3 there exists a non-r-critical solution of

E. Appending the pebbling step [a, b] to this solution yields a non-r-critical

solution of D. Therefore, E is r-critical. Because [a, b] is the first step in a

greedy solution of D, the remainder of this solution is a greedy solution of E,

so E is also greedy. By the induction hypothesis w(E) = 1, and by Lemma

10, w(D) = w(E). Consequently, w(D) = 1. �

Corollary 12 If w(D) < 1 then D is r-insufficient.

Proof. By Lemma 10, no pebbling step increases the weight of a rooted dis-

tribution, and the weight of a solved rooted distribution is at least 1. It follows

that the weight of any r-solvable rooted distribution is at least 1. �

Corollary 13 For any graph G, w(G) ≥ 1. �

Theorem 14 G is thrifty if and only if w(G) = 1.

Proof. Suppose G is thrifty and D is an r-ceiling distribution on G. Then

since G is thrifty, D is greedy. By Lemma 11, D has weight 1. As this is true

for any r-ceiling distribution on G, w(G) = 1.

Conversely, suppose w(G) = 1 and D is an r-ceiling distribution on G. Then

D has weight 1. By Lemma 10 and Corollary 13, D must be r-solvable using

only greedy pebbling steps. Thus, D is greedy, and G is thrifty. �

Theorem 15 If G is a thrifty graph with diameter d, then cr(G) = 2d.

Proof. Suppose D is an r-ceiling distribution on G. By Lemma 2, |D| ≥ 2d.

Since G is thrifty, by Lemma 14, w(D) = 1. Because every pebble in D must

contribute at least 1
2d

to w(D), there must be exactly 2d of them. �

By Theorems 14 and 15, all thrifty graphs achieve the lower bound for weight

given in Corollary 12 and the lower bound for r-critical pebbling number

given in Lemma 2. Thus, thrifty graphs are in some sense the simplest graphs

with respect to r-critical pebbling number. However, although all graphs with
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weight 1 are thrifty, we prove in Theorem 23 that not all graphs with r-critical

pebbling number 2d are thrifty.

4 Separating Examples

We now consider five specific graphs, which we prove distinguish the classes

of greedy graphs, thrifty graphs, and graphs G for which cr(G) = 2d. The first

of these is C7, the cycle on 7 vertices. The remaining four graphs we call G1

through G4, and display them in Figures 7, 8, 9, and 10, respectively. For each

graph, we first determine its pebbling number and r-critical pebbling number,

and then prove that it has the required properties.

To determine cr(C7), it will be useful to have the following lemma. If H is a

subgraph of G, D is a rooted distribution on G, and E is a rooted distribution

on H, we say that E is induced from D if the root of E is the root of D, and

E(a) = D(a) for all vertices a of H.

Lemma 16 If D is a rooted distribution on G, P is a path in G with end

vertex r, E is the rooted distribution on P induced from D, and w(E) > 1,

then D is r-excessive.

Proof. Suppose that there are no pebbles on r and at most one pebble on

every other vertex of P . Then w(E) < 1. Assuming that E is not solved, it

follows that there exists a vertex a of P for which E(a) > 1. Therefore, we

may pebble from a towards r. Since this pebbling step is greedy, by Lemma 10,

the new rooted distribution E ′ obtained from this pebbling step still satisfies

w(E ′) > 1. We may continue in this way until we reach a solved rooted

distribution F . Because w(F ) > 1, F is r-excessive, so E is r-excessive. As we

may use these same pebbling steps on D, D is also r-excessive. �

Theorem 17 The cycle C7 is not thrifty, not greedy, and has r-critical peb-

bling number greater than 2d.

Proof. The pebbling number of C7 is 11 [PSV95]. Let r be any vertex of C7,

and let u and v be the two vertices farthest from r. Then it is easy to verify

that the rooted distribution D(u, v) = (5, 6) is not greedy.

Suppose that D is a rooted distribution on C7 with 11 or more pebbles, and
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suppose that the number of pebbles in D on each of the six non-root vertices

of C7 are a, b, c, d, e, and f , starting from a vertex adjacent to r and con-

tinuing around the cycle. We consider the two paths from r clockwise and

counterclockwise around the cycle. If D is r-critical, then by Lemma 16, D

must satisfy

a

2
+

b

4
+

c

8
+

d

16
+

e

32
+

f

64
≤ 1 and

a

64
+

b

32
+

c

16
+

d

8
+

e

4
+

f

2
≤ 1.

Adding these inequalities and simplifying yields

33a + 18b + 12c + 12d + 18e + 33f ≤ 128

12(a + b + c + d + e + f) + 21a + 6b + 6e + 21f ≤ 128.

Since |D| = a + b + c + d + e + f ≥ 11, we have

132 = 12 · 11 ≤ 12(a + b + c + d + e + f) + 21a + 6b + 6e + 21f ≤ 128,

which is a contradiction. Consequently, there is no r-critical distribution on

C7 with 11 or more pebbles, and cr(C7) ≤ 10. As the rooted distribution

D(u, v) = (4, 6) is r-critical, cr(C7) = 10. Also, this rooted distribution is not

greedy, so C7 is not thrifty.

Finally, d(C7) = 3, and so cr(C7) = 10 > 8 = 2d. �

a b c d e

f g h

15

1 1 1

Fig. 7. A labeling and a rooted distribution on the graph G1.

Lemma 18 p(G1) = 18.

Proof. We follow the labeling system given in Figure 7. Let H be the induced

subgraph of G1 on the vertices b, c, d, f , g, and h. Note that H ∼= F5. We will

show that any distribution on G1 with 18 pebbles is solvable.

Let D be a distribution on G1 with 18 pebbles and assume without loss of

generality that D(a) ≥ D(e). We may also assume that D(a) is odd because,
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if D(a) is even, we may add one pebble at a without affecting the solvability

of D. There are five cases to consider:

Case 1. D(a) ≥ 17. In this case, we may pebble to any root from a, since

d(G1) = 4.

Case 2. D(a) = 15 and r = e. In this case, we perform the pebbling step [a, b]

7 times, yielding at least 7 pebbles on b, and 10 pebbles total on H. If there is

an additional pebble on b, c, or d, or two pebbles on f , g, or h, the resulting

distribution is solvable. The only case left is D(b, f, g, h) = (7, 1, 1, 1). Then

the rooted distribution is still r-solvable.

Case 3. D(a) = 13 and r = e. We perform the pebbling step [a, b] 6 times,

yielding at least 6 pebbles on b, and 11 pebbles total on H. The same argu-

ments as in Case 2 apply here as well.

Case 4. D(a) ≤ 11 and r = e. We perform the pebbling step [a, b] as many

times as possible, yielding at least 12 pebbles total on H. Since p(H) = 6 by

Theorem 7, this means that we can pebble two pebbles to d, and one to r.

Case 5. The vertex r is in H. We have 18 pebbles in our distribution. We

move as many pebbles as possible from a and e into H. We may leave at most

1 pebble on each of a and e, leaving at least 16 pebbles total. At most half

of these may be used moving into H, leaving at least 8 pebbles on H. But

p(H) = 6 by Theorem 6.

So p(G1) ≤ 18. If we remove the pebble on f from the rooted distribution in

Figure 7, then this rooted distribution is no longer r-solvable. So p(G1) = 18.

�

Lemma 19 cr(G1) = 16.

Proof. By Lemma 2, cr(G1) ≥ 16. We show that any r-critical distribution

on G1 has at most 16 pebbles. Again, we use the labeling system of Figure 7,

and identify H as the induced subgraph of G1 on the vertices {b, c, d, f, g, h}.

Case 1. r is a vertex of H.

Let D be a rooted distribution on G1 with 16 pebbles. We move as many

pebbles as possible from a and e into H. We may leave at most 1 pebble on
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each of a and e, leaving at least 14 pebbles total. At most half of these may

be used moving into H, leaving at least 7 pebbles on H. Because cr(H) = 5

by Theorem 8, D is r-excessive. Hence, there are no r-critical distributions on

G1 with r in H. Without loss of generality, there is only one case remaining.

Case 2. r = e.

By definition, every r-critical distribution must have a solution S which leaves

one pebble on e and no pebble on any other vertex. Let the rooted distributions

arrived at after each pebbling step of S be D15, D14, . . . , D2, D1. We consider

the pebbling steps in S in reverse order. The last pebbling step in S must be

[d, e], from the rooted distribution D2 with two pebbles on d and no pebble

on any other vertex to the rooted distribution D1 with one pebble on e.

We color one of the pebbles in D2 red and the other blue. For each pebbling

step before [d, e], we identify the pebble produced from the pebbling step as

either red or blue, and color the two input pebbles the same color. Working

back through these rooted distributions in this way, we arrive at a coloring of

the pebbles in D.

We consider the rooted distributions R and B of only red and blue pebbles,

respectively. Note that {R,B} is a partition of the distribution D into not

necessarily equal sizes. The rooted distributions R and B are each r-critical

distributions on G1− e with root d, since any non-r-critical solution of one of

these rooted distributions would result in a non-r-critical solution of D.

Without loss of generality, a solution of R can begin by pebbling all of the

pebbles on a in R to b, obtaining the rooted distribution R′. However, R′ is an

r-critical distribution on H, so it must have one of the forms given in Lemma

5. This implies that R has at most 8 pebbles, and the only form of R with

eight pebbles has all eight pebbles on a. This is also true for B.

Since |R| ≤ 8 and |B| ≤ 8, |D| ≤ 16. So the largest r-critical distributions on

G1 have 16 pebbles, and the only r-ceiling distributions on G1 have 16 pebbles

on a. Consequently, cr(G1) = 16. �

Note that since d(G1) = 4, cr(G1) = 2d.

Theorem 20 G1 is thrifty but not greedy.
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Proof. By Lemma 19, the only r-ceiling distributions on G1 have 16 pebbles

at one of the two vertices a and e, and the root at the other vertex. As these

rooted distributions are greedy, G1 is thrifty.

However, the rooted distribution given on G1 in Figure 7 has p(G1) pebbles

and is not greedy. Thus, G1 is not greedy. �

Note that since G is thrifty if and only if w(G) = 1, G1 is also an example

of a non-greedy graph for which w(G) = 1. By Theorem 17, C7 is not greedy

and w(C7) > 1. Thus, although the weight of a graph determines its thrift, it

does not determine its greed.

12

1 1 1 1 1 1 1 1

15 rr

a b c d e

f g h i

Fig. 8. A labeling and two non-greedy rooted distributions on the graph G2.

Lemma 21 p(G2) = 19.

Proof. The proof is analogous to the proof of Lemma 18. We use the labeling

system of G2 given in Figure 8. We verify that every rooted distribution on

G2 with 19 pebbles is r-solvable. If a rooted distribution has r = e, then we

pebble as many pebbles as possible from a to b, and are then able to solve the

resulting rooted distribution. If a rooted distribution has r in {b, c, d, f, g, h, i}
(the analogous subgraph to the subgraph H in Lemma 18), then we pebble

as many pebbles as possible from a to b and from e to d, and can then solve

the resulting rooted distribution by Theorem 7. So p(G2) ≤ 19. If we remove

the pebble on f from the second rooted distribution in Figure 8, the resulting

rooted distribution is no longer r-solvable. Consequently, p(G2) = 19. �

Lemma 22 cr(G2) = 16.

Proof. The proof is analogous to the proof of Lemma 19. The only r-critical

distributions on G2 with 16 pebbles have r = a or r = e. We assume r = e and
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D(e) = 0. Every r-critical distribution of this form can be colored red and blue

so that the resulting red and blue rooted distributions R and B are r-critical

distributions on G2 − e. Each of these rooted distributions can be solved by

first pebbling all of the pebbles from a to b, resulting in rooted distributions

R′ and B′, which are r-critical distributions on H. By Lemma 5, these rooted

distributions must take one of the five forms given in that lemma. Again, R

and B can each have at most eight pebbles, and it follows that cr(G2) = 16.

Note that given the assumption r = e, R must either have R(a) = 8 or

R(a, f, g, h, i) = (4, 1, 1, 1, 1), and equivalently for B. It follows that the only

r-critical distributions on G2 with 16 pebbles must be a combination of two

of these rooted distributions. However, D(a, f, g, h, i) = (8, 2, 2, 2, 2) is not r-

critical. Therefore, the only r-critical distributions on G2 with 16 pebbles are

either D(a) = 16 or D(a, f, g, h, i) = (12, 1, 1, 1, 1). �

Theorem 23 G2 is not thrifty, not greedy, and has r-critical pebbling number

2d, where d is the diameter of G2.

Proof. By Lemma 22, cr(G2) = 16 = 2d, because d(G2) = 4. The first rooted

distribution in Figure 8 shows a non-greedy r-ceiling distribution on G2, so G2

is not thrifty. The second rooted distribution in Figure 8 shows a non-greedy

rooted distribution on G2 with 19 pebbles, which is the pebbling number of

G2 by Lemma 21. �

r

11

2 r

11

1

3

Fig. 9. An r-critical and an r-insufficient distribution on the graph G3.

Theorem 24 The graph G3 shown in Figure 9 is greedy, not thrifty, and has

r-critical pebbling number 2d.

Proof. The second rooted distribution in Figure 9 is an r-insufficient distri-

bution on G3 with 6 pebbles. This implies that p(G3) ≥ 7.

Let D be a rooted distribution on G3 with 7 pebbles. We show that D is

r-solvable and greedy. If r has a pebble on it, we are done. If every vertex but

19



r has a pebble on it, then there is one vertex a with more than one pebble. In

this case, we can pebble from a to r using a shortest path, so D is r-solvable

and greedy.

Now suppose that there is a vertex a other than r with no pebbles on it. That

leaves 4 vertices and 7 pebbles. By the pigeonhole principle, D has either one

vertex with at least 4 pebbles or two vertices a and b with at least 2 pebbles

each. In the first case, the 4 pebbles can be pebbled to r along a shortest path.

In the second case, either a or b is adjacent to r or both a and b are adjacent

to a neighbor of r. So again D is r-solvable and greedy. Since every rooted

distribution on G3 with 7 pebbles is r-solvable and greedy, p(G3) = 7 and G3

is greedy.

By Lemma 5, any r-critical distribution D on G3 with more than 4 pebbles

must have at least 2 pebbles on one vertex and at least one pebble on at least

3 other vertices. Call the first vertex a and the other three vertices b, c, and d.

For D to be r-critical, the only solution of D must be ([a, b], [b, c], [c, d], [d, r]).

Then the induced subgraph consisting of these five vertices must be a path.

But there is no induced P5 in G3. So cr(G3) ≤ 4, and because d(G3) = 2,

cr(G3) = 4. In particular, this implies that cr(G3) = 2d.

The first rooted distribution D shown in Figure 9 is r-critical and has four

pebbles, and so D is an r-ceiling distribution. Therefore, since D is not greedy,

G3 is not thrifty. �

3

1

1 1 1

r r

111

2

Fig. 10. An r-insufficient and an r-critical distribution on the graph G4.

Theorem 25 The graph G4 shown in Figure 10 is greedy and has r-critical

pebbling number greater than 2d.

Proof. The proof is analogous to the proof of Theorem 24. The first distribu-

tion in Figure 10 is an r-insufficient distribution on G4 with 7 pebbles. This

implies that p(G4) ≥ 8.
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Let D be a rooted distribution on G4 with 8 pebbles. As before, we can rule

out the case in which D has a pebble on r and the case in which there is at

least one pebble on every other vertex. Consider the remaining case, in which

there is a vertex a other than r with no pebbles on it. That leaves 5 vertices

and 8 pebbles. By the pigeonhole principle, D has either one vertex with at

least 4 pebbles or two vertices with at least 2 pebbles each. As before, every

rooted distribution on G4 with 8 pebbles is r-solvable and greedy, so p(G4) = 8

and G4 is greedy.

Again by Lemma 5, any r-critical distribution D on G4 with more than 5

pebbles must have 2 pebbles on one vertex and one pebble on at least 4

other vertices. By the same reasoning as in Theorem 24, the induced subgraph

consisting of these six vertices must be a path. Since there is no induced P6

in G4, cr(G4) ≤ 5. The second rooted distribution D shown in Figure 10 is

r-critical and has five pebbles, so cr(G4) = 5. In particular, cr(G4) > 4 = 2d,

since d(G4) = 2. �

greedy

 c (G)=2d

thrifty

r

C7

G

G

G

G

K

2

1

1

3

4

Fig. 11. The Venn diagram of rooted pebbling properties of graphs.

The above results are summarized in the Venn diagram in Figure 11. In each
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region of this Venn diagram, a graph is shown with the given properties.

Theorem 26 The fan Fk has weight k+1
4

.

Proof. By Theorem 8, cr(Fk) = k. Thus, the weight of Fk is the largest

weight of an r-critical distribution D on Fk with k pebbles. No r-critical

distribution with more than two pebbles can have more than one pebble in

the neighborhood of r. Since d(Fk) = 2, this means that at least k − 1 of the

k pebbles in D are distance 2 from r. If all k pebbles in D are distance 2

from r, then w(D) = k
4
. If exactly k − 1 pebbles in D are distance 2 from r

then w(D) = 1
2

+ k−1
4

= k+1
4

. The first diagram in Figure 6 shows an r-critical

distribution with k pebbles and weight k+1
4

. �

Corollary 27 There exist graphs with diameter 2 that have arbitrarily large

weight. �

This concludes our discussion of the r-critical pebbling number. We hope to

explore the g-critical and u-critical pebbling numbers further in future work.

Acknowledgements

We thank Glenn Hurlbert for suggesting the g-critical pebbling number and

Figure 3 to us, and Glenn Hurlbert and Aparna Higgins for many helpful

suggestions.

References

[Hur99] Glenn H. Hurlbert, A survey of graph pebbling, Proceedings of the Thirtieth

Southeastern International Conference on Combinatorics, Graph Theory,

and Computing (Boca Raton, FL, 1999), vol. 139, 1999, pp. 41–64.

[Moe92] David Moews, Pebbling graphs, J. Combin. Theory Ser. B 55 (1992), no. 2,

244–252.

[PSV95] Lior Pachter, Hunter S. Snevily, and Bill Voxman, On pebbling graphs,

Proceedings of the Twenty-sixth Southeastern International Conference on

Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995),

vol. 107, 1995, pp. 65–80.

22


