Math 476: Modern Geometry Python Handout

Write a Python program to accomplish each task. Each program can use the ones before it. These steps implement the algorithmic proof of the Polygonal Jordan Curve Theorem (Theorem 1.1).

- 1. Input three points on a line, p_1 , p_2 , and p_3 , and check if p_2 and p_3 are on the same side of p_1 . Use the program **xbetween** for guidance.
- 2. Input four points, p_1 , p_2 , p_3 , and p_4 , and check if the ray p_1p_2 intersects the line segment p_3p_4 . Use the program lineintseg for guidance.
- 3. Input four points, p_1 , p_2 , p_3 , and p_4 , and check if the line segments p_1p_2 and p_3p_4 intersect.
- 4. Input four points, p_1 , p_2 , p_3 , and p_4 , and check if lines p_1p_2 and p_3p_4 are parallel.
- 5. Input a point p_1 and a polygon P, and output a point p_2 so that p_1p_2 is not parallel to any side of P.
- 6. Input a ray p_1p_2 and a polygon P, and output the number of vertices of P that p_1p_2 is tangent to (its neighbor vertices are on the same side of p_1p_2).
- 7. Input a ray p_1p_2 and a polygon P, and output the number of vertices of P that p_1p_2 crosses (its neighbor vertices are on different sides of p_1p_2).
- 8. Input a point p_1 and a polygon P, and check if the point p_1 is on the boundary of the polygon P.
- 9. Input a point p_1 and a polygon P, and check if the point p_1 is in the interior of the polygon P. Use the proof of Theorem 1.1 for guidance.