
Theorem 1 (Kuratowski’s Theorem, 1930). A graph is planar if and only if it doesn’t
contain a subdivision of K5 or K3,3.

Theorem 2 (Wagner, 1937). A graph is planar if and only if it doesn’t contain a K5

minor or a K3,3 minor.

Definitions:

� A Kuratowski subgraph of G is a subgraph of G that is a subdivision of K5 or
K3,3.

� A minimal non-planar graph is a non-planar graph G for which every proper
subgraph of G is planar.

� A vertex cut of G is a set of vertices whose removal disconnects G. Note that a
cut vertex is a vertex cut with one vertex.

� Given a vertex cut S of G, an S-lobe of G is the induced subgraph of G whose
vertices are S and a component of G− S.

� A convex embedding of a planar graph G is a planar embedding of G for which
every face is convex.

Proof of Kuratowski’s Theorem.

Part I. If G has a Kuratowski subgraph then G is not planar.

Part II. If G is not planar then G has a Kuratowski subgraph.
We prove this by minimal counterexample. Suppose G is a minimal non-planar graph
and has no Kuratowski subgraph.

1. G is 3-connected.

(a) Given any face F of a planar embedding of G, we can embed G in the plane
with F as the outside face.

(b) Every minimal non-planar graph is 2-connected.

(c) If S = {x, y} is a vertex cut of G, then the graph obtained by adding the
edge xy to an S-lobe of G is not planar.

(d) SinceG is minimal non-planar, G has no vertex cut {x, y}, soG is 3-connected.
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2. Every 3-connected graph with no Kuratowski subgraph is planar.

We prove a stronger statement by induction: Every 3-connected graph with no
Kuratowski subgraph has a convex embedding.

(a) Base case. K4 works.

(b) Induction step. Assume G is 3-connected, has no Kuratowski subgraph,
and has at least 5 vertices.

i. G has an edge e such that G′ = G · e is 3-connected. (By contradiction)

A. Suppose G · e is not 3-connected for any edge e. Then for any two
adjacent vertices x and y of G, there is a third vertex z of G such
that G− {x, y, z} is disconnected.

B. Among all such triples of vertices x, y, and z, choose x, y, and z so
that G−{x, y, z} has a component H with the most vertices. Let H ′

be another component of G−{x, y, z}. All three vertices x, y, and z
have edges to both H and H ′.

C. Let u ∈ H ′ be adjacent to z. There is a vertex v in G such that
G− {u, v, z} is disconnected.

D. Let J be the induced subgraph of G with vertices V (H) ∪ {x, y}. J
may or may not contain v, but either way J − v is connected.

E. J − v is contained in a component of G−{u, v, z} with more vertices
than H, contradicting the choice of H.

ii. G′ doesn’t have a Kuratowski subgraph. (By contrapositive)

A. Suppose G′ has a Kuratowski subgraph H. Let w be the vertex in
G′ obtained by contracting e. If w ̸∈ V (H) then G has a Kuratowski
subgraph.

B. If w ∈ V (H) and w has degree 2 in H then G has a Kuratowski
subgraph.

C. If w ∈ V (H) and at most one edge incident to w in H is incident to
x in G, then G has a Kuratowski subgraph.

D. Suppose w ∈ V (H) at least two edges incident to w in H are incident
to x in G, and at least two edges incident to w in H are incident to
y in G. Then H has a subdivision of K5.

E. In this case, G has a subdivision of K3,3.

iii. G′ has a convex embedding.

iv. G has a convex embedding.
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A. Let w be the vertex in G′ obtained by contracting e. In a convex
embedding of G′, let G′′ be the graph obtained by deleting the edges
incident to w. The boundary of the face of G′′ containing w is a cycle
C of G′ and of G.

B. Each edge from w to C in G′ must be an edge from x or y, or both,
to C in G.

C. If x and y share 3 neighbors of C, then G has a subdivision of K5, a
contradiction.

D. If x and y alternate neighbors a, b, c, d on C, then G has a subdivision
of K3,3, a contradiction.

E. So x and y share at most two neighbors on C, and all the neighbors
of y appear between two consecutive vertices of x.

F. We can fit x and y in the convex embedding of G′ to make a convex
embedding of G.
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