If Ais diagonalizable, the equation A= PDP~" can be thought of as a
factorization of the matrix A. If A isn’t diagonalizable, we can use the
singular value decomposition (SVD) instead.

Theorem (Singular Value Decomposition)
If A is an m x n matrix of rank k, then there exist matrices U, ¥, and
VT such that A= UL VT and

Q@ ATA= VDV~ for some diagonal matrix D.

©Q X is a diagonal matrix. The first k diagonal entries of * are the
square roots of the nonzero eigenvalues of AT A (the singular
values of A), in decreasing order, and the rest are 0.

© If U is the ith column of U, V; is the ith row of VT, and o} is the ith
diagonal entry of ¥, then U; = (1/a;)AV;.

Q The first k columns of U form an orthonormal basis of col(A), and
the first k columns of V form an orthonormal basis of row(A).

© The columns of U form an orthonormal basis of R™, and the
columns of V form an orthonormal basis of R".
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Singular value decomposition (SVD)

A=UxzVT

Reduced SVD

If rank(A) = r, then we can take the first r columns of U and X and the
first r rows of V in the SVD and it still works!

A= Uz, V]

Rank k approximation of A

Taking fewer rows and columns of U, ¥, and V gives a good
approximation of A with smaller rank.

A = UL VI with k < r

This is how the SVD is used for image compression.
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