
If A is diagonalizable, the equation A = PDP−1 can be thought of as a
factorization of the matrix A. If A isn’t diagonalizable, we can use the
singular value decomposition (SVD) instead.

Theorem (Singular Value Decomposition)
If A is an m × n matrix of rank k, then there exist matrices U, Σ, and
V T such that A = UΣV T and

1 AT A = VDV−1 for some diagonal matrix D.
2 Σ is a diagonal matrix. The first k diagonal entries of Σ are the

square roots of the nonzero eigenvalues of AT A (the singular
values of A), in decreasing order, and the rest are 0.

3 If ~ui is the ith column of U, ~vi is the ith row of V T , and σi is the ith
diagonal entry of Σ, then ~ui = (1/σi)A~vi .

4 The first k columns of U form an orthonormal basis of col(A), and
the first k columns of V form an orthonormal basis of row(A).

5 The columns of U form an orthonormal basis of Rm, and the
columns of V form an orthonormal basis of Rn.
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Singular value decomposition (SVD)

A = UΣV T

Reduced SVD
If rank(A) = r , then we can take the first r columns of U and Σ and the
first r rows of V in the SVD and it still works!

A = Ur Σr V T
r

Rank k approximation of A
Taking fewer rows and columns of U, Σ, and V gives a good
approximation of A with smaller rank.

Ak = Uk ΣkV T
k with k < r

This is how the SVD is used for image compression.
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