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Abstract

A graph G is a prime distance graph (respectively, a 2-odd graph) if its
vertices can be labeled with distinct integers such that for any two adjacent
vertices, the difference of their labels is prime (either 2 or odd). We prove
that trees, cycles, and bipartite graphs are prime distance graphs, and that
Dutch windmill graphs and paper mill graphs are prime distance graphs
if and only if the Twin Prime Conjecture and dePolignac’s Conjecture are
true, respectively. We give a characterization of 2-odd graphs in terms of
edge colorings, and we use this characterization to determine which circulant
graphs of the form Circ(n, {1, k}) are 2-odd and to prove results on circulant
prime distance graphs.
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1. Introduction

Prime distance graphs were introduced by Eggleton, Erdős, and Skilton in
1985 [4, 5]. For any set D of positive integers, they defined the distance graph
Z(D) as the graph with vertex set Z and an edge between integers x and y
if and only if |x − y| ∈ D. The prime distance graph Z(P ) is the distance
graph with D = P , the set of all primes. They proved that the chromatic
number χ(Z(P )) = 4. Research in prime distance graphs has since focused
on the chromatic number of Z(D) where D is a non-empty proper subset of P
[7, 6, 17, 19]. Note that these graphs are all infinite (non-induced) subgraphs
of Z(P ). In this paper we investigate finite subgraphs of Z(P ).

Specifically, we say that a graph G is a prime distance graph if there
exists a one-to-one labeling of its vertices L : V (G) → Z such that for any
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two adjacent vertices u and v, the integer |L(u) − L(v)| is prime. We also
define L(uv) = |L(u)− L(v)|. We call L a prime distance labeling of G,
so G is a prime distance graph if and only if there exists a prime distance
labeling of G. We sometimes denote a vertex with label i by (i). Note that
in a prime distance labeling, the labels on the vertices of G must be distinct,
but the labels on the edges need not be. Also note that by our definition,
L(uv) may still be prime if uv is not an edge of G.

We say that G is 2-odd if for any two adjacent vertices u and v, |L(u)−
L(v)| is either odd or exactly 2, in which case L is a 2-odd labeling of
G. Note that prime distance graphs are trivially 2-odd. Corollary 22 below
shows that not every 2-odd graph is a prime distance graph.

Example 1. The path Pn is 2-odd and prime-distance for each n. Figure 1
shows a prime distance (and therefore 2-odd) labeling of Pn.

�

0 3 6 9 3(n− 1)3n

Figure 1: A prime distance labeling of Pn.

2. Connections to Well-known Statements in Number Theory

Surprisingly, the existence of prime distance labelings of some infinite fam-
ilies of graphs is closely related to several well-known statements in Number
Theory. In this section we show that all bipartite graphs are prime distance
graphs using the Green-Tao Theorem; we give three separate proofs that
all cycle graphs are prime distance graphs using the Goldbach Conjecture,
Vinogradov’s Theorem, and Ramaré’s Theorem, respectively; and we show
that Dutch windmill graphs and paper mill graphs are prime distance graphs
if and only if the Twin Prime Conjecture and dePolignac’s Conjecture are
true, respectively.

Recall that an arithmetic progression of positive integers is a sequence
of positive integers such that the differences between successive terms of the
sequence is a constant.
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The Green-Tao Theorem. [10] For any positive integer k, there exists a
prime arithmetic progression of length k.

Theorem 1. Every bipartite graph is a prime distance graph.

Proof. We show that the graph Kr,s is a prime distance graph. Since every
subgraph of a prime distance graph is also a prime distance graph, this
proves that every bipartite graph is a prime distance graph. By the Green-
Tao Theorem, there is an arithmetic sequence of r+s−1 primes p−(r−1)k,
p− (r−2)k, . . ., p−k, p, p+k, . . ., p+(s−2)k, p+(s−1)k. Let A and B be
the partite sets of G with |A| = r and |B| = s. Label the members of B with
the labels p, p + k, . . ., p + (s − 1)k and the members of A with the labels
0, k, 2k, . . . , (r − 1)k. Then differences between members of A and members
of B are all of the form p + nk, with n ∈ {−(r − 1), −(r − 2), . . ., -1, 0, 1,
. . ., s− 2, s− 1}, and each such p+ nk is prime.

In other words, every 2-chromatic graph is a prime distance graph. How-
ever, we note that not every 3-chromatic graph is a prime distance graph
since K3,3,3 is not a prime-distance graph. In fact, K3,3,3 is not 2-odd.

Goldbach’s Conjecture. [1, 15] Every even number greater than 2 is the
sum of two primes.

Theorem 2. If Goldbach’s Conjecture is true, then every cycle is a prime
distance graph.

Proof. If n = 3, then Cn can be prime distance labeled with labels 0, 3, and
5. If n = 4 then Cn can be prime distance labeled with labels 0, 3, 8, and
11. If n = 5, then Cn can be prime distance labeled with labels 0, 3, 6, 9,
and 11. Suppose n ≥ 6, and write 2n − 4 as the sum of two primes, say
2n − 4 = p1 + p2. Then Cn can be prime distance labeled with labels 0, 2,
. . ., 2n− 4, and p1 in cyclic order. Since 2n− 4 is even and at least 6, then
p1 must be odd, so the vertex labels are distinct.

Vinogradov’s Theorem. [13, 16] Every sufficiently large odd number is the
sum of 3 primes.

Theorem 3. Every cycle is a prime distance graph.
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Proof. If n = 3, then Cn can be prime distance labeled with labels 0, 3, and
5. Suppose n ≥ 4, and let p be a prime number large enough such that by
Vinogradov’s Theorem, p + 2n − 8 can be written as the sum of 3 primes,
say p + 2n − 8 = p1 + p2 + p3. Also assume p > 4n and p1 ≥ p2 ≥ p3, so in
particular p1 > 2n − 8. Then Cn can be prime distance labeled with labels
0, 2, . . ., 2n−8, p+ 2n−8, p1 +p2, and p1 in cyclic order. Since p1 > 2n−8,
the vertex labels are distinct.

Ramaré’s Theorem. [14] Every even number is the sum of at most 6
primes.

Theorem 4. Every cycle is a prime distance graph.

Proof. If 3 ≤ n ≤ 7 then Cn can be prime distance labeled using any of the
techniques above. Suppose n ≥ 8, let p be a prime number larger than 10n,
and write 2n − 5 + p as the sum of at most 6 primes, p1 through pi, where
2 ≤ i ≤ 6. Again assume p1 is the largest of these primes, so p1 > 2n − 5.
Then we have 5 cases:

Case 1. 2n− 5 + p = p1 + p2. Then Cn can be prime distance labeled with
labels 0, 2, 4, . . . , 2n− 8, 2n− 5, 2n− 5 + p, and p1.

Case 2. 2n− 5 + p = p1 + p2 + p3. Then Cn can be prime distance labeled
with labels 0, 2, 4, . . . , 2n− 10, 2n− 5, 2n− 5 + p, p1 + p2, and p1.

Case 3. 2n − 5 + p = p1 + p2 + p3 + p4. Then Cn can be prime distance
labeled with labels 0, 2, 4, . . . , 2n−12, 2n−5, 2n−5+p, p1 +p2 +p3, p1 +p2,
and p1.

Case 4. 2n− 5 + p = p1 + p2 + p3 + p4 + p5. Then Cn can be prime distance
labeled with labels 0, 2, 4, . . . , 2n − 18, 2n − 15, 2n − 10, 2n − 5, 2n − 5 + p,
p1 + p2 + p3 + p4, p1 + p2 + p3, p1 + p2, and p1.

Case 5. 2n−5+p = p1+p2+p3+p4+p5+p6. Then Cn can be prime distance
labeled with labels 0, 2, 4, . . . , 2n − 20, 2n − 15, 2n − 10, 2n − 5, 2n − 5 + p,
p1 + p2 + p3 + p4 + p5, p1 + p2 + p3 + p4, p1 + p2 + p3, p1 + p2, and p1.

In each case, since p1 > 2n− 5, the vertex labels are distinct.
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Figure 2: The Dutch windmill graph D5.

Recently, an announcement was made of a proof of the Weak Goldbach
Conjecture [12]. The authors believe this theorem could also be used to prove
that every cycle is a prime distance graph.

The Dutch windmill graph Dn or friendship graph is the star S2n

with central vertex v0 and leaves v1 through v2n, with an edge between each
consecutive pair of vertices v2k−1 and v2k, 1 ≤ k ≤ n. So Dn has n copies of
C3 joined at the common vertex v0 [9, 8]. Figure 2 shows D5.

The Twin Prime Conjecture. There are infinitely many pairs of primes
that differ by 2.

Theorem 5. Every Dutch windmill graph is a prime distance graph if and
only if the Twin Prime Conjecture is true.

Proof. First assume that Dn has a prime distance labeling for any positive
integer n, and consider one such prime distance labeling of Dn. Without loss
of generality, assume that v0 is labeled with 0. Note that there must be at
most two more even labels on the remaining vertices, so at least n− 2 of the
triangles in Dn have two odd labels. In each of these triangles, since both
odd-labeled vertices are adjacent to v0, their labels must be prime. Since
their difference is even and prime, it must be 2, so each triangle is labeled
with a pair of twin primes. That is, if Dn is prime distance, there are at
least n − 2 twin primes. Therefore, if all Dutch windmill graphs are prime
distance graphs, then the Twin Prime conjecture is true.
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a b

Figure 3: The stack of books Sk.

Conversely, if the Twin Prime Conjecture is true, then the labeling with
0 on v0 and a pair of twin primes on each triangle is a prime distance labeling
of Dn.

We construct the paper mill graphs as follows. First, the (triangular)
book graph B5 is the tripartite graph K1,1,5 consisting of 5 triangles sharing
a common edge, the spine of the book [18]. The stack of books Sk is a
union of k copies of B5 joined so that their spines form a path, as shown in
Figure 3. Then let the paper mill graph Mn,k be the graph constructed
from Dn by replacing each edge uv not incident to the center vertex v0 by a
copy of Sk at vertices a and b.

dePolignac’s Conjecture. [3, 2] For any positive even integer 2k, there
exist infinitely many pairs of consecutive primes that differ by 2k.

Lemma 6. In any prime distance labeling of Sk, the labels on the vertices a
and b differ by exactly 2k.

Proof. By Corollary 10 below, in any prime distance labeling of B5, each
3-cycle must have exactly one edge labeled 2. But at most two of these edges
can be incident to any single vertex, so the spine of B5 must be labeled 2.
Therefore all the edges in the path between a and b are labeled 2.

Theorem 7. Every paper mill graph is a prime distance graph if and only if
dePolignac’s Conjecture is true.
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Proof. First assume that Mn,k has a prime distance labeling for any positive
integers n and k, and consider one such prime distance labeling of Mn,k.
Without loss of generality, assume that the center vertex v0 is labeled with
0. Then all the vertices adjacent to v0 are labeled with primes. By Lemma 6,
the ends of the paths on each Sk make up n pairs of primes such that each
pair differs by 2k. Therefore, if all paper mill graphs are prime distance
graphs, dePolignac’s Conjecture is true.

Conversely, assume that dePolignac’s Conjecture is true; note that this
also implies the Twin Prime Conjecture. We construct a prime distance
labeling of Mn,k for given positive integers n and k. Label v0 with 0 and the
ith path of spines by pi, pi + 2, . . ., pi + 2k, where pi and pi + 2k are prime.
We choose each pi so that pi is sufficiently large that labels do not repeat.
Then label the five additional vertices in the jth book with distinct integers
so that the five pairs of edges are twin primes; do this for each book along
Si without repeating labels. (This is possible by assumption.) Repeat this
for each Si.

3. Edge Colorings

Given a prime distance (respectively, 2-odd) graph, we color red the edges
labeled with 2 and blue the edges labeled with odd primes (odd integers).
Conversely, given a graph G with edges colored red and blue (an edge-
colored graph), a prime distance (respectively, 2-odd) labeling of G is color-
satisfying if the label on every red edge is 2 and the label on every blue
edge is prime (odd). We say that an edge-coloring of G is a prime distance
coloring (respectively, 2-odd coloring) if there exists a color-satisfying
prime distance labeling (2-odd labeling) of G.

Suppose that G is edge-colored, and for two vertices u and v of G, the
edge uv is red. If L is a color-satisfying prime distance (respectively, 2-odd)
labeling of G, then L(uv) = 2, so we may assume without loss of generality
that L(u) = 0 and L(v) = 2.

The following proposition shows that not every color-satisfying 2-odd
labeling will lead to a prime-distance labeling. Throughout this paper, red
and blue edges will be represented by thick and thin edges, respectively.

Proposition 8. The graph G shown in Figure 4 is a prime distance graph
but has a 2-odd coloring that is not a prime-distance coloring.
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Figure 4: A color-satisfying 2-odd labeling and a failed attempt at a color-satisfying prime-
distance labeling of the same graph

Proof. First note that by Theorem 27 below, G is a prime distance graph.
Now the first labeling of G shown in Figure 4 is a color-satisfying 2-odd
labeling. Note that G has two red paths, each with 5 vertices. If there were
a prime-distance labeling L of G, without loss of generality, one of these
paths would be labeled with 0, 2, 4, 6, and 8, and the other with p, p ± 2,
p±4, p±6, and p±8, where p is a prime or the negative of a prime, as shown
in the second labeling in Figure 4. However, note that p is adjacent to 0, 4,
and 8, which constitute all of the equivalence classes modulo 3. Thus one of
these three distances must be divisible by 3 and prime, and therefore exactly
3. So p must be one of the numbers −3, 3, 1, 7, 5, or 11. But each of these
values of p yields a non-prime edge: if p = −3, then L((p + 4)(0)) = 1 and
L((p − 4)(2)) = 9; if p = 3 then L((p)(4)) = 1; if p = 1 then L((p)(0)) = 1;
if p = 7 then L((p)(8)) = 1; if p = 5 then L((p)(4)) = 1; if p = 11 then
L((p− 4)(8)) = 1 and L((p+ 4)(0)) = 15.

Lemma 9. Suppose G is an edge-colored graph with a color-satisfying 2-odd
labeling L. Then every cycle in G has a positive even number of blue edges.

Proof. Suppose C = v1v2 . . . vk is a cycle in G. If vivi+1 is red, then L(vi) and
L(vi+1) have the same parity, and if vivi+1 is blue, then L(vi) and L(vi+1)
have different parity. The parity of the labels of a cycle must change an even
number of times, so C has an even number of blue edges. Now suppose by
way of contradiction that C has no blue edges. Since v1v2 is red, we may
assume without loss of generality that L(v1) = 0 and L(v2) = 2. Then since
vertex labels are not repeated, L(v3) = 4, L(v4) = 6, . . . , L(vk) = 2k − 2.
Since k ≥ 3, L(v1vk) = 2k − 2 is neither 2 nor odd.

Corollary 10. In an edge-colored graph with a color-satisfying 2-odd labeling,
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every odd cycle has at least one red edge, and every 3-cycle has exactly one
red edge.

Since every prime distance labeling is also a 2-odd labeling, Lemma 9 and
Corollary 10 hold for prime distance labelings as well.

The following lemma will be useful also. Recall that the symmetric
difference H14H2 of two subgraphs H1 and H2 of a graph G is the graph
with an edge e in H14H2 if e is in H1 or H2, but not both [18]. For con-
venience, we ignore isolated vertices in H14H2. Note that if C1 and C2 are
cycles in G, then C14C2 is a union of edge-disjoint cycles in G.

Lemma 11. If C1 and C2 are cycles in an edge-colored graph G that both
have a positive even number of blue edges, then C14C2 has a positive even
number of blue edges, as well.

Proof. If C1 and C2 have an odd number of blue edges in common, then they
each have an odd number of blue edges that are not shared; thus, the number
of blue edges in C14C2 is even. If they have an even number of blue edges
in common, then they also both have an even number that are not shared,
and C14C2 again has an even number of blue edges.

Note that by the result of Eggleton, Erdős, and Skilton above, χ(G) ≤ 4
if G is a prime distance graph. It follows that Kn is not a prime distance
graph if n ≥ 5. We prove that Kn is also not a 2-odd graph for n ≥ 5.

Proposition 12. The graph K5 is not 2-odd.

Proof. We label the vertices of K5 as v1, v2, v3, v4, and v5 in cyclic order. By
way of contradiction, assume that K5 has a 2-odd coloring. By Lemma 9, the
outside cycle of K5 must have at least one red edge; without loss of generality,
we may assume that v1v2 is red. Then by Corollary 10, v1v5 and v2v5 must
be blue. Similarly, v1v4 and v2v4 must be blue, as must v1v3 and v2v3. With
both v1v3 and v1v4 blue, we must have v3v4 red again by Corollary 10. But
now, because of 3-cycles on v2, v3, v5 and v3, v4, v5, we must have v3v5 and
v4v5 red, which creates a red 3-cycle on v3, v4, and v5.

Since every subgraph of a 2-odd graph is also 2-odd, it follows that Kn is
not 2-odd for n ≥ 5.
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4. A Characterization of 2-odd Graphs

The following theorem characterizes 2-odd graphs in terms of edge color-
ings. In an edge-colored graph, the red-degree (respectively, blue-degree)
of a vertex v is the number of red edges (blue edges) incident with v.

Theorem 13. A graph G is 2-odd if and only if it admits an edge-coloring
satisfying the following two conditions:

1. No vertex of G has red-degree greater than 2.

2. Every cycle in G contains a positive even number of blue edges.

Proof. If G is 2-odd, then it admits a labeling with distinct integers such that
the difference between labels on adjacent vertices is either odd or exactly 2.
This induces a coloring on the edges of G: when the difference between such
labels is exactly 2, color the corresponding edge red; when the difference is
odd, color the edge blue. No vertex can be incident with three or more red
edges since such a vertex would have a label exactly 2 different from three
distinct integers. Also, since the labeling is color-satisfying by construction,
Lemma 9 implies that Condition 2 is satisfied.

Conversely, suppose that G admits an edge-coloring satisfying Condi-
tions 1 and 2. Consider the subgraph H of G consisting solely of red edges.
By Conditions 1 and 2, H is a union of paths. Consider the minor G/H ob-
tained by contracting all of the red edges. We see that G/H is bipartite since
G/H has no odd cycles by Condition 2. Label the partite sets of G/H A and
B. Partition the vertices of G into sets A′ and B′ depending on whether they
contract to a vertex in A or B in G/H. Note that since every red path in
G contracts to a vertex in G/H, each red path in G is completely contained
in either A′ or B′. Label the vertices of each of these paths with consecu-
tive odd integers if the path lies in A′ and with consecutive even integers if
the path lies in B′, using only previously unused integers in each case. Any
remaining vertices of A′ again can be labeled with any unused odd integers
and remaining vertices of B′ can be labeled with any unused even integers.
This labeling is a 2-odd labeling of G since every edge between vertices of
the same parity is labeled with 2.
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5. Circulant Graphs

For a positive integer n ≥ 3 and subset S ⊆ {1, 2, . . . , n}, the circulant
graph Circ(n, S) is the graph with vertex set {v1, v2, . . . , vn} and an edge
between vertices vi and vj if and only if |i− j|modn ∈ S [11]. Equivalently,
Circ(n, S) is the Cayley graph of the group Zn with generating set S. In this
section we focus on the circulant graphs Circ(n, {1, k}) for 1 ≤ k ≤ n − 1,
which, for simplicity, we write as Circ(n, k). Since Circ(n, k) ∼= Circ(n, n−k),
we choose k ≤ n/2.

v1

v2

v3

v4

v5

v6v7

v8

v9

v10

v11

v12

Figure 5: The graph Circ(12, 5).

In these graphs we call the edges for which |i− j|modn = 1 the outside
edges and the edges for which |i − j|modn = k the inside edges, since
our drawings of Circ(n, k) will have the outside edges around the outside of
a circle, with inside edges as chords. Each vertex in Circ(n, k) is incident to
exactly 2 outside edges and 2 inside edges as long as k > 1. If k = 1 we
say that Circ(n, k) has no inside edges. In addition, we define a generating
cycle of Circ(n, k) to be either a (k + 1)-cycle with exactly one inside edge,
or the outside n-cycle. We will refer to the generating (k + 1)-cycles as
g1, g2, . . . , gn, where gi is the generating cycle with inside edge vivi+k.

5.1. 2-odd Circulant Graphs

Lemma 14. Every cycle in Circ(n, k) is a generating cycle or a symmetric
difference of generating cycles.

Proof. Let C be a cycle in Circ(n, k). The proof is by induction on the
number of inside edges of C. If there are none, then C is the outside cycle
and the lemma is satisfied. Now assume that C has c inside edges and
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that any cycle with fewer than c inside edges satisfies the lemma. If C is a
generating cycle, we are done. Otherwise, let D be a generating cycle whose
inside edge also belongs to C. Then C4D is an edge-disjoint union of cycles
C1, C2, . . ., Ck, each of which has fewer than c inside edges and therefore
satisfies the lemma. Since C14C24· · ·4Ck4D = (C4D)4D = C, we see
that C also satisfies the lemma.

Theorem 15. A circulant graph Circ(n, k) is 2-odd if and only if it admits
an edge-coloring satisfying the following two conditions:

1. No vertex of Circ(n, k) has red-degree greater than 2.

2. Every generating cycle of Circ(n, k) contains a positive even number of
blue edges.

Proof. Apply Lemmas 11 and 14 and Theorem 13.

Theorem 15 gives us a way to quickly verify whether a given edge-coloring
of Circ(n, k) shows that Circ(n, k) is 2-odd.

The following theorem gives a characterization of 2-odd circulant graphs.

Theorem 16. The circulant graph Circ(n, k) is 2-odd if and only if (n, k) 6=
(5, 2).

Proof. Case 1. k = 1. In this case Circ(n, k) = Cn, which by Theorem 3 is
prime distance, hence 2-odd, for all n.

Case 2. n is even, k is even, and 1 < k < n/2. We construct a 2-odd
coloring of Circ(n, k). Color red the outside edges vnv1, vkvk+1, v2kv2k+1, . . .,
vmkvmk+1, where m is the greatest odd integer such that mk < n. That is,
color red every kth outside edge, stopping after the maximum even number
of outside edges are red without passing the first red edge. Also color red
the inside edge of any generating cycle that contains both vnv1 and vmkvmk+1

(the first and last outside edges that are red) or none of the red outside edges.
Color the remaining edges blue.

We show that this coloring satisfies both conditions of Theorem 15. We
first check Condition 2. Note that our construction guarantees an even num-
ber of red edges on the outside cycle, which is an even cycle since n is even.
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The remaining generating cycles are all odd, so to satisfy Condition 2 they
must have an odd number of red edges. Since none of these cycles contain
more than 2 outside red edges, by construction they have an inside red edge
if and only if they have an even number of outside red edges, so Condition 2
is satisfied.

Finally, we check Condition 1. Since every vertex in Circ(n, k) is incident
to 2 outside edges and 2 inside edges, and there are no 2 consecutive red
outside edges in this coloring, any vertex with red-degree 3 or greater must
be incident to exactly 1 outside red edge and 2 inside red edges. However, the
only red inside edges are those that belong to generating cycles containing
both vnv1 and vmkvmk+1 or containing no outside red edges. The latter case
cannot create a red-degree-3 vertex. For the former case, we observe that
the only potential red-degree-three vertices are vn, v1, vmk, and vmk+1. Of
these, vn and vmk+1 do not belong to generating cycles that contain both
vnv1 and vmkvmk+1. Since neither v1vk+1 nor v(m−1)kvmk (the other inside
edges on v1 and vmk) belongs to such a generating cycle either, none of the
four candidates can have red-degree three.

Case 3. n is even, k is even, and k = n/2. Coloring exactly the inside
edges red gives each generating cycle (except the outside cycle) one red edge
and k = n/2 blue edges, and the outside cycle n blue edges. Thus, this
edge-coloring satisfies Theorem 15.

Case 4. n is even and k is odd. Since every generating cycle has length
k + 1 or length n, every cycle of G is even by Lemma 14, so coloring every
edge of G blue yields a 2-odd coloring of G.

Case 5. n is odd and k is odd. Color the outside edge v1v2 red, and color
the k inside edges vi−kvi red for 2 ≤ i ≤ k + 1. This gives one red edge on
the outside cycle and one red edge on each of the k generating cycles that
include it. Note that the outside cycle is odd and the other generating cycles
are even. This coloring gives 1 red edge on the outside cycle and either 0 or
2 red edges on each other generating cycle, satisfying the conditions of the
theorem.

Case 6. n is odd, k is even, and n > 5. Apply the technique used
in the proof of Case 2, but take m as the greatest even integer such that
mk < n. The argument then proceeds as above. Note that the argument
fails for K5 = Circ(5, 2) since the procedure would create a red 3-cycle.
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Case 7. (n, k) = (5, 2). In this case Circ(n, k) = K5, which by Proposition 3
is not a 2-odd graph.

We will use these 2-odd colorings to aid us in determining which circulant
graphs are prime-distance graphs.

5.2. Prime Distance Circulant Graphs

The following theorem summarizes the results of this section. Recall that
without loss of generality, we choose k ≤ n/2.

Theorem 17. The circulant graph Circ(n, k) is not a prime distance graph
if

1. n is odd and k = 2

2. n is odd and k = (n− 1)/2.

The circulant graph Circ(n, k) is a prime distance graph if

1. n > 7 and k = 3

2. n is even, k = n/2, and k is even

3. n is even and k is odd.

For the remaining values of n and k we make the following conjecture, which
we have verified for n ≤ 14.

Conjecture 18. The circulant graph Circ(n, k) is a prime distance graph if
and only if none of the following hold:

1. n is odd and k = 2

2. n is odd and k = (n− 1)/2

3. (n, k) = (6, 2).
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Lemma 19. The edge-colored graph CF shown in Figure 6 has exactly one
color-satisfying prime distance labeling up to isomorphism, labeling the ver-
tices a, b, c, and d with 0, 2, 4, and 7, respectively.

Proof. We construct a color-satisfying prime distance labeling L of CF . Since
the edge ab is red, we may assume L(a) = 0 and L(b) = 2. Since labels on
vertices are unique, this forces L(c) = 4.

Suppose L(d) = x. Then L(A) = x, L(B) = |x− 2|, and L(C) = |x− 4|
are all prime, so they must be the numbers 3, 5, and 7. Since there exists
an automorphism swapping A and C, we may choose L(A) = 7, L(B) = 5,
and L(C) = 3, so L(d) = 7. This is a valid color-satisfying prime distance
labeling of CF .

a D b E c

C

d

A B

Figure 6: The edge-colored graph CF

We now define the edge-colored graph CFk for all k ≥ 1 (CF stands for
colored fan). CFk has vertices {a1, a2, . . . , ak+3, b1, b2, . . . , bk} and is com-
prised of three paths and two extra edges: the red-edge path a1, a2, . . . , ak+3,
the red-edge path b1, b2, . . . , bk, the blue-edge path a2, b1, a3, b2, . . . , ak+1, bk,
ak+2, and the two blue edges a1b1 and ak+3bk. The graphs CF1, CF2, and
CFk are shown in Figure 7.

Lemma 20. CFk has no color-satisfying prime distance labeling for all k ≥
1.

Proof. By way of contradiction, suppose that CFk has a color-satisfying
prime distance labeling L. The induced subgraph of CFk on the vertices
a1, a2, a3, and b1 is CF , so by Lemma 19, L(a1) = 0, L(a2) = 2, L(a3) = 4,
and L(b1) = 7. In the case k = 1, this forces a4 to have label 6, which makes
a4b1 non-prime. Now assume k > 1.
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Figure 7: The edge-colored graphs CF1, CF2, and CFk.

Since edge b1b2 is red, L(b2) is either 5 or 9. But if L(b2) = 5 then
L(a3b2) = 1, which is not prime, so L(b2) = 9. Since the edges a3a4, a4a5,
. . . , ak+2ak+3 and the edges b2b3, b3b4, . . ., bk−1bk are all red, this forces the
labeling on the remaining vertices L(a4) = 6, L(a5) = 8, . . . , L(ak+3) =
2k + 4 and L(b3) = 11, L(b4) = 13, . . ., L(bk) = 2k + 5. But this means
L(ak+3bk) = 1, which is not prime.

Theorem 21. Circ(2n+ 1, 2) is not a prime distance graph for all n ≥ 2.

Proof. Suppose by way of contradiction that L is a prime distance labeling
of Circ(2n + 1, 2). Since the outside edges of Circ(2n + 1, 2) form an odd
cycle and the inside edges form an odd cycle, by Lemma 10, Circ(2n + 1, 2)
must have at least one red outside edge and at least one red inside edge.

Suppose without loss of generality that the edge v1v2 is red, and L(v1) = 0
and L(v2) = 2. Note that v2v3 must be blue by Lemma 9 since vertices v1,
v2, and v3 form a 3-cycle. Suppose vivi+1 is the next red outside edge, i.e.
vivi+1 is red and vjvj+1 is blue for all 2 ≤ j ≤ i − 1. Consider the induced
subgraph G of Circ(2n + 1, 2) on the vertices v1, . . . , vi+1. If i is even (and
thus i ≥ 4), we will show that the coloring on the edges of G induced by
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the prime distance labeling L of Circ(2n+1, 2) yields the edge-colored graph
CFi/2−1. Since CFi/2−1 has no color-satisfying prime distance labeling, this
will prove that i must be odd.

Since v1v2 is red, v1v3 must be blue by Corollary 10. Since vivi+1 is red,
vi−1vi+1 must be blue by Corollary 10. For all 2 ≤ j ≤ i−2, since vjvj+1 and
vj+1vj+2 are blue, vjvj+2 must be red by Corollary 10. This is exactly the
edge-coloring of the graph CFi/2−1, with v1 = a1, v2 = a2, v3 = b1, v4 = a3,
v5 = b2, v6 = a4, . . . , vi−1 = bk, vi = ak+2, vi+1 = ak+3.

Thus i must be odd. Note that vertices with a red edge between them
have labels with the same parity, and vertices with a blue edge between them
have labels with different parity. Since the number of blue edges between v2
and vi is i− 2, which is odd, L(vi) is odd, so L(vi+1) is also odd. Continuing
in this way, if vjvj+1 is the next red edge, L(vj) is even and L(vj+1) is even.
Thus the labels on the vertices of the outside red edges alternate parity in
pairs. This implies that there are an even number of outside red edges,
contradicting Lemma 10.

Since we know that Circ(2n + 1, 2) is a 2-odd graph if n > 2, we also
obtain the following corollary.

Corollary 22. Not every 2-odd graph is a prime distance graph.

A bowtie path in Circ(2n+ 1, n) is a path of the form

vava+n+1va+n+2va+n+3 . . . va+n+rva+r

for some positive integers a and r. Figure 8 shows an example of a bowtie
path.

Lemma 23. If in a 2-odd coloring of Circ(2n + 1, n), the edges vava+1 and
va+1va+2 are red, then so is the edge va+n+1va+n+2.

Proof. Without loss of generality, let a = 1. Since v1v2 is red, we must have
both v1vn+2 and v2vn+2 blue since v1, v2, and vn+2 form a triangle. Similarly,
since v2v3 is red, v2vn+3 and v3vn+3 are blue. But then we have v2vn+2 and
v2vn+3 both blue, so vn+2vn+3 must be red since it is the third edge in the
triangle with vertices v2, v3, and vn+3.
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v4

v5
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v9

v10

v11

v1

Figure 8: A bowtie path in Circ(2n+ 1, n), with n = 5, a = 1, and r = 4.

Lemma 24. If Circ(2n+1, n) is edge-colored so that a bowtie path in Circ(2n+
1, n) has only red edges, then it has no color-satisfying prime-distance label-
ing.

Proof. Suppose by way of contradiction that Circ(2n+1, n) has such a prime-
distance labeling. Without loss of generality, let a = 1, so the all-red bowtie
path in Circ(2n+1, n) is on the vertices v1,vn+2, vn+3, . . ., vn+r+1, vr+1. Again
without loss of generality, we may assume that these vertices are labeled 0,
2, 4, 6, . . ., and 2(r + 1). By Lemma 23, the edges vn+3+nvn+4+n = v2v3,
. . ., vn+r+nvn+r+1+n = vr−1vr are also red. Note that if r = 2 then there are
no edges of this form. In either case, the edge v1v2 must be blue since it
belongs to the triangle with vertices v1, v2, vn+2 which already has the red
edge v1vn+2.

Consider the possible labels on the vertex v2. This vertex is adjacent to
vertices with labels 0, 2, and 4, which represent all equivalence classes modulo
three. Thus one of the distances between v2 and these three neighbors must
be a multiple of 3 and prime, so it must be exactly three. Thus, v2 must be
labeled with either −3 or 7. Now we may proceed along the new red path
given by Lemma 23.

The next label along this path after a −3 could be −5 since it is adjacent
to a vertex labeled 4, and the next label after a 7 could be 5 for the same
reason. Thus the red path beginning at v2 must have labels −3, −1, 1, . . .,
2r − 7 or 7, 9, 11, . . ., 2r + 3. But the terminal vertex in this path, which
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is labeled either 2r − 7 or 2r + 3, is adjacent to vr+1, which is labeled with
2(r+1). The distance between these two vertices is thus either 9 or 1, neither
of which is prime.

Define the red path RPm and the blue path BPm as the edge-colored
subgraphs of Circ(2n+ 1, n) shown in Figure 9.

Theorem 25. Circ(2n+ 1, n) is not a prime distance graph for all n ≥ 2.

Proof. Suppose by way of contradiction that Circ(2n + 1, n) is a prime dis-
tance graph, and consider a prime distance labeling of Circ(2n+ 1, n), with
corresponding edge coloring. Since 2n+1 is odd, the outside cycle must have
at least one red edge.

Step 1. Every maximal red outside path in Circ(2n + 1, n) with vertices
vi, . . ., vi+m induces the edge-colored subgraph RPm shown in Figure 9 as
follows:

Since this red path is maximal, the edges vi−1vi and vm+ivm+i+1 are blue.
By Corollary 10, this induces blue edges vivn+i+1, vi+1vn+i+1, vi+1vn+i+2,
vi+2vn+i+2, . . ., vm+i−1vm+i+n, vm+ivm+i+n and red edges vn+i+1vn+i+2, vn+i+2vn+i+3,
. . ., vm+i+n−1vm+i+n, as well as vi−1vn+i. By Lemma 24, we cannot have both
edges vm+ivm+i+n+1 and vivn+i red, so we may assume without loss of gener-
ality, that vivn+i is blue. Since vivn+i+1 is also blue, we must have vn+ivn+i+1

red. If vm+ivm+i+n+1 were blue as well, then, because vm+ivm+i+n is blue,
we would additionally have vm+i+nvm+i+n+1 and vm+i+n+1vm+i+1 red, con-
tradicting Lemma 24. Thus vm+ivm+i+n+1 must be red and vm+i+nvm+i+n+1

must be blue.

vn+i-1

vi

vn+i vn+i+1vn+i+2

vi+1 vm+i-1

vn+m+i vn+m+i+1

vm+i vm+

...

i+1

vn+m+i-1

vi-1 vi

vn+i vn+i+1vn+i+2

vi+1 vm+i-1 vm+i vm+i+1

...

vi-1

vn+m+i vn+m+i+1vn+m+i-1

Figure 9: The edge-colored graphs RPm (left) and BPm (right).
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Step 2. Every maximal blue outside path in Circ(2n + 1, n) with vertices
vi, . . ., vm+i induces the edge-colored subgraph BPm shown in Figure 9.

Since this blue path is maximal, the edges vi−1vi and vm+ivm+i+1 are red.
By Step 1, either the edge vivn+i+1 or the edges vn+ivn+i+1 and vn+i+1vi+1

are red. Assume vivn+i+1 is red (the other case is a reflection of this one).
Then by Corollary 10, vi+1vn+i+1 is blue. If vi+1vi+2 is red, then vi+1vn+i+2 is
blue, vn+i+1vn+i+2 is red, and we have BP1. Otherwise we continue as before,
until reaching the first red edge vm+ivm+i+1.

Step 3. The subgraphs RPm and BPm cannot fit together to form a valid
red-blue edge coloring of Circ(2n+1, n): to complete the outside cycle (after
gluing together whatever copies of BPm and RPm appear), the top left corner
of RPm must be adjacent to the bottom right corner of BPm. However, this
results in a red bowtie path:

vm+i−1vn+m+ivn+m+i+1 . . . vn+m+i+r︸ ︷︷ ︸
from end of BPm

vn+m+i+r+1vm+i+r︸ ︷︷ ︸
from beginning of RPm

.

Therefore Circ(2n+ 1, n) is not a prime-distance graph.

Proposition 26. If n is even and k is odd, then Circ(n, k) is a prime distance
graph.

Proof. Since Circ(n, k) is bipartite if n is even and k is odd, the result follows
from Theorem 1.

Theorem 27. If n > 7, then Circ(n, 3) is a prime distance graph.

Proof. By the previous Proposition, it suffices to consider Circ(2n + 1, 3).
The labeling depends on the congruence class of n modulo 3.

Case 1. n ≡ 0 (mod 3). In this case we label the vertices v1, v2, v3, v4, v5,
v6, . . ., v3i+1, v3i+2, v3i+3, . . ., vn−3, vn−2, vn−1, vn, vn+1, vn+2, vn+3, vn+4,
vn+5, . . ., v3j, v3j+1, v3j+2, . . ., v2n−3, v2n−2, v2n−1, v2n, and v2n+1 with the

labels 4, 2, −1, 6, 9, 12, . . ., 11i−5, 11i−2, 11i+ 1, . . .,
11

3
n−21,

11

3
n−16,

11

3
n − 13,

11

3
n − 2,

11

3
n + 1,

11

3
n + 4,

11

3
n − 9,

11

3
n − 12,

11

3
n − 15, . . .,

22

3
n − 11j + 2,

22

3
n − 11j − 1,

22

3
n − 11j − 4, . . ., 13, 10, 7, 0, and −3,

respectively. Note that the edges around the outside cycle appear in the
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pattern 3, 3, 5, 3, 3, 5, . . ., except for the edges between vertices v2n−1 through
v4 and vertices vn−1 through vn+3. Hence most inner edges are labeled 11.
The exceptions are easily verified to be prime also.

Case 2. n ≡ 1 (mod 3). In this case we keep the majority of the labels from
Case 1, but change the labels of the vertices vn−3, vn−2, vn−1, vn, vn+1, vn+2,

vn+3, vn+4, vn+5, vn+6, . . ., v3j, v3j+1, and v3j+2 to
11(n− 1)

3
−16,

11(n− 1)

3
−

13,
11(n− 1)

3
−10,

11(n− 1)

3
+7,

11(n− 1)

3
+10,

11(n− 1)

3
−7,

11(n− 1)

3
−4,

11(n− 1)

3
− 9,

11(n− 1)

3
− 12,

11(n− 1)

3
− 15, . . .,

22(n− 1)

3
− 11j + 10,

22(n− 1)

3
−11j+7, and

22(n− 1)

3
−11j+2, respectively. Again edges around

the outside cycle appear in the pattern 3, 3, 5, 3, 3, 5, . . ., and the exceptions
are easily verified to be prime also.

Case 3. n ≡ 2 (mod 3). In this case again we keep the majority of the
labels from Case 1, but change the labels of the vertices vn−3, vn−2, vn−1,

vn, vn+1, vn+2, vn+3, vn+4, vn+5, . . ., v3j, v3j+1, and v3j+2 to
11(n− 2)

3
− 11,

11(n− 2)

3
− 8,

11(n− 2)

3
− 5,

11(n− 2)

3
+ 6,

11(n− 2)

3
+ 9,

11(n− 2)

3
+ 2,

11(n− 2)

3
− 1,

11(n− 2)

3
− 4,

11(n− 2)

3
− 9, . . .,

22(n− 2)

3
− 11j + 18,

22(n− 2)

3
− 11j + 13, and

22(n− 2)

3
− 11j + 10, respectively. Again the

proof goes through as in Case 1.

The proof of Theorem 27 illustrates the difficulty in characterizing prime
distance circulant graphs. We believe this technique could be modified to
prove Circ(n, k) is a prime distance graph for a fixed k strictly between 2
and (n− 1)/2, but a new technique is needed to prove this for general k.

Theorem 28. If n > 2 and n/2 are even, then Circ(n, n/2) is a prime
distance graph.

Proof. Circ(4, 2) and Circ(8, 4) are easily shown to be prime distance, so
assume n ≥ 12. Choose a prime p sufficiently large such that by Vinogradov’s
Theorem, p− 3n/2 + 10 can be expressed as a sum of three primes q1, q2, q3.
That is, p = 3n/2 + 10 + q1 + q2 + q3.
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Figure 10: A prime distance labeling of Circ(20, 10)

In counterclockwise order, we label vn with 0, and vn−1, vn−2, vn−3, . . .,
vn/2+4 with 7, 10, 13, . . ., 3n/2−8, respectively, label vn/2 with 2, and vn/2−1,
vn/2−2, vn/2−3, . . ., v4 with 5, 8, 11, . . ., 3n/2− 10, respectively.

Then we label v1 with p, v2 with q1 + q2 + 3k − 10, v3 with q1 + 3k − 10,
vn/2+1 with p+2, vn/2+2 with q1+q2+3n/2−8, and vn/2+3 with q1+3n/2−8.
Figure 10 shows the case n = 10 and p = 47.

This gives a prime distance labeling of G.

6. Open Questions

In addition to Conjecture 18, we pose the following open questions.

1. Is there a family of graphs which are prime distance graphs if and only
if Goldbach’s Conjecture is true?

2. What circulant graphs Circ(n, S), for more general sets S, are prime
distance graphs?

3. By our definition of prime distance graphs, L(uv) may still be prime if
uv is not an edge of G. How do the results of this paper change if we
define L(uv) to be prime if and only if uv is an edge of G?

4. What other families of graphs are prime distance graphs? More specifi-
cally, by Eggleton, Erdős, and Skilton’s result, all prime distance graphs
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Figure 11: A planar graph which is not a prime distance graph.

have chromatic number at most 4, but not all planar graphs are prime
distance graphs by the example shown in Figure 11. Can we classify
which planar graphs are prime distance graphs?
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