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Abstract. We define the (n, i, f)-tube orders, which include interval orders, trape-
zoid orders, triangle orders, weak orders, order dimension n, and interval-order-
dimension n as special cases. We investigate some basic properties of (n, i, f)-tube
orders, and begin classifying them by containment.
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1. Introduction

Suppose that R is a finite set of closed intervals on the real line (drawn
horizontally). If x and y are intervals in R, then we define x < y if and
only if x lies entirely to the left of y. We call this order relation the
standard ordering of R. An ordered set P is called an interval order if
there exists an ordered set R, whose elements are intervals ordered by
the standard ordering, such that P ∼= R. This isomorphism is called an
interval representation of P . We also refer to the set R as an interval
representation of P .

A number of generalizations of interval orders have been defined. In
particular, the trapezoid orders [1, 8] and the triangle orders [4, 7]. In
this paper we generalize still further to the (n, i, f)-tube orders, which
subsume interval, triangle, and trapezoid orders as special cases. The
(n, i, f)-tube orders also specialize to the dimension n orders and the
interval-order-dimension n orders.

2. Definitions and Notation

Let B1, . . . Bn be parallel lines in n-dimensional space, each parallel to
the x1-axis, and otherwise in general position. In other words, no k
of these lines lie in the same (k − 1)-dimensional space. We define an
n-tube to be the convex hull of n lines of this form. We call these lines
the baselines of the n-tube. Note that the canonical ordering on the
x1-axis induces a natural, consistent ordering on each of the baselines.
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2 Joshua D. Laison

We will always consider the x1-axis to be oriented horizontally, so that
if x and y are two intervals on a baseline Bk, and x < y in the standard
ordering, we say that x is to the left of y, and y is to the right of x.

Let T be an n-tube, and let X be a set of polytopes contained in
T , such that for every polytope p ∈ X, at least one point of p lies on
every one of the baselines of T . We call the intersection p∩Bk the base
of p on the baseline Bk, and denote it by pk. The standard ordering of
the set X is defined as follows. If p and q are two polytopes in X, then
p < q if and only if p and q are disjoint, and p1 is to the left of q1.
Note that if each polytope in X did not intersect every baseline, then
this relation might not be an order relation. For example, consider the
2-tube shown in Figure 1, in which w < x < y < z < w. A tube of
polytopes is an ordered pair (T, R), where T is an n-tube, and R is a
set of polytopes with the above properties, ordered with the standard
ordering.

Suppose (T, R) is a tube of polytopes. Consider a polytope p ∈ R.
For each baseline Bk, pk must be a vertex or an interval. The remaining
vertices of p are not contained in any baseline of T . We call the vertices
of p on the baselines the bound vertices of p and the remaining vertices
the free vertices of p.

Suppose n, i, and f are non-negative integers, and (T,R) is a tube
of polytopes. Suppose further that T is an n-tube, every polytope in
R intersects at most i baselines in an interval of positive length, and
every polytope in R has at most f free vertices. Then (T,R) is called
a tube of (n, i, f)-poytopes. If P is an ordered set, and there exists a
tube of (n, i, f)-poytopes (T, R) and an ordered set isomorphism φ :
P → R, then we call P an (n, i, f)-tube order and φ an (n, i, f)-tube
representation. In particular, if (T, R) is a tube of (n, i, f)-poytopes,
then R is an (n, i, f)-tube order via the identity function. We denote
the class of all (n, i, f)-tube orders by T (n, i, f).

Given an (n, i, f)-tube order P , it will be convenient to display an
(n, i, f)-tube representation of P as a tube of (n, i, f)-polytopes (T,R),
with each polytope p in R labelled with the unique element φ−1(p) of P
given by the (n, i, f)-tube representation φ : P → R. We will call such
a diagram an (n, i, f)-tube representation of P and refer to the ordered
pair (T,R) as an (n, i, f)-tube representation of P when the labelling
is clear from context.

If (T,R) is a tube of (n, i, f)-polytopes, then it has baselines B1, . . . , Bn.
For a polytope p in R, if p has two distinct vertices on the baseline Bk,
we will denote them by v−k (p) and v+

k (p), meaning the left and right
vertices of p on Bk, respectively. If p has one vertex on Bk, we denote it
by vk(p) or by v−k (p) or by v+

k (p). We denote the horizontal coordinates
of v−k (p), v+

k (p), and vk(p) by x−k (p), x+
k (p), and xk(p), respectively.
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Figure 1. The condition that each polytope intersect every baseline is necessary

Note that since B1, . . . , Bn are parallel but otherwise in general
position, any two baselines Bk and Bj determine a face of T . We will
denote the face of T containing the two baselines Bk and Bj by fkj(T ).
Since p contains at least one point on Bk and at least one point on Bj ,
and p is convex, p contains at least a line segment, and possibly a face,
in fkj(T ). We denote the intersection of p with fkj(T ) by fkj(p). We
denote by Ik the ordered set of the bases pk, p ∈ R, ordered by the
standard ordering of intervals on a line.

3. Properties of Tube Representations

We call an (n, i, f)-tube representation (T,R) pleasant if it satisfies the
following properties:

1. All polytopes in R have exactly f free vertices.

2. All polytopes in R intersect exactly i baselines of T in intervals of
positive length.

3. All vertices of all polytopes in R are distinct.

4. All vertices of all polytopes in R have an x1-value in N.

5. B1 is the line {x2 = 0, . . . , xn = 0}, and Bk is the line {x2 =
0, . . . , xk−1 = 0, xk = 1, xk+1 = 0, . . . , xn = 0} for k > 1.

Lemma 3.1. If P is an (n, i, f)-tube order, then there exists a pleasant
(n, i, f)-tube representation of P .

Proof. Let P be an (n, i, f)-tube order, and let (T,R) be an (n, i, f)-
tube representation of P . We convert (T,R) into a pleasant (n, i, f)-
tube representation of P using the following algorithm.

Step 1. Suppose that p is a polytope in R with less than f free vertices.
Choose an edge e of p not on a baseline of T . For any positive
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number ε, let p + ε be the set of points within distance ε of p. We
choose an ε such that all polytopes other than p either intersect p
or are disjoint from p+ ε. Choose a point x within ε of e but not in
p. We make x a new free vertex of the polytope p by redefining p to
be the convex hull of the old p and the point x. The new polytope
p contains every point in the old p and does not intersect any new
polytopes, by the choice of x above. Thus the order relation on R
is unchanged. We continue this procedure until every polytope in
R has exactly f free vertices.

e

x

p

p+ε

Figure 2. Step 1 of the algorithm

Step 2. Suppose that p is a polytope in R with less than i intervals of
positive length on the baselines of T . Choose a baseline Bk such
that pk is a single vertex.

Again, we choose an ε such that all polytopes other than p either
intersect p or are disjoint from p + ε. Choose a point x in p + ε, on
the baseline Bk, but distinct from pk. We make x a new vertex of
the polytope p by redefining p to be the convex hull of the old p
and the point x. We continue this procedure until every polytope
in R has exactly i intervals of positive length along the baselines of
T . Again, by the choice of x, the order relation on R is unchanged.

x

p

Bkpk

p+ε

Figure 3. Step 2 of the algorithm
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Step 3. Suppose p and q are two polytopes in R that intersect in a
single vertex v+

k (p) = v−k (q). Then we define p + ε as above, and
choose a point x in p + ε, to the right of v+

k (p) on the baseline Bk.
We replace v+

k (p) with x, and redefine p to be the convex hull of the
old p and the point x. We obtain an (n, i, f)-tube representation
of P in which v+

k (p) and v−k (q) are distinct.

This procedure also works on if p and q share two left vertices
or two right vertices. If p and q share a free vertex, we let L be
the line parallel to the baselines of T and containing this vertex,
and we replace Bk by L in the procedure above. We continue this
procedure until every vertex of every polytope in R is distinct.

x

p

Bkvkr(p)

q

p+ε

Figure 4. Step 3 of the algorithm

Step 4. We first add a constant value to the x1-coordinate of every
element of R so that every x1-coordinate of every vertex in R is
positive. Then we move every vertex in R horizontally by some
small amount so that it has a rational x1-coordinate, in other
words, x(v) = av

bv
for all vertices v in R. Let m be the least common

multiple of the numbers bv. We multiply the x1-coordinates of
every polytope in R by m, so that every vertex of every polytope
in R has an x1-coordinate in N.

Step 5. Finally, let H be the hyperplane consisting of all of the points
of n-space with x1-coordinate 0. H is perpendicular to every base-
line Bk of T . The intersection of H with T is an (n−1)-dimensional
simplex s. We perform an affine transformation on n-space which
preserves the subspace orthogonal to H and acts on H by moving
s to the standard simplex with vertices (in n-space) (0, . . . , 0),
(0, 1, . . . , 0), (0, 0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). After this transfor-
mation, T has property 5.

The (n, i, f)-tube representation (T,R) is now pleasant. Further,
each step of the algorithm did not change the ordering of the polytopes
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in R. Therefore (T, R) is now a pleasant (n, i, f)-tube representation of
P , as claimed.

Note that every polytope in a pleasant tube of (n, i, f)-polytopes
has exactly n + i + f vertices.

An initial inspection of the definitions leads us to the following
restrictions on the non-negative integers n, i, and f for any tube of
(n, i, f)-polytopes (T, R). The n-tube T must have at least one baseline,
so n > 0. A polytope can never intersect more baselines in intervals
than there are baselines, so i ≤ n. Finally, if T has only one baseline,
then R must contain no free vertices, so if n = 1, then f = 0. All other
combinations of non-negative integers n, i, and f are permissible.

In what follows, we distinguish the intersection of sets in the plane
from the intersection of ordered sets common in the theory of ordered
sets by calling the latter order intersection. The interval-order dimen-
sion of an ordered set P is the minimal number of interval orders whose
order intersection is P .

Lemma 3.2. Suppose that (T,R) is a tube of (n, i, f)-polytopes.

1. If f = 0, then R is the order intersection of the interval orders Ik,
1 ≤ k ≤ n.

2. If f > 0, then the order intersection of the interval orders Ik,
1 ≤ k ≤ n, is an extension of R.

Proof. 1. If f = 0, then each polytope p ∈ R is the convex hull of the
intervals {pk}n

k=1. Therefore p < q if and only if pk is to the left of
qk for all 1 ≤ k ≤ n.

2. If f > 0, then the convex hull of the intervals {pk}n
k=1 is properly

contained in p, for all 1 ≤ k ≤ n. Therefore p < q implies that pk

is to the left of qk for all 1 ≤ k ≤ n, but not conversely.

Suppose that P is an (n, 0, 0)-tube order, and (T, R) is a pleasant
(n, 0, 0)-tube representation of P . The elements {pk} are points, with
natural numbers as their x1-coordinates, and the standard ordering Ik

on {pk} is obtained by comparing the x1-coordinates of these elements.
In other words, Ik is a weak order, and by Lemma 3.2, {R1, . . . , Rn}
is a weak-order realizer of P . Therefore T (1, 0, 0) is the class of weak
orders, and when n > 1, T (n, 0, 0) is the class of ordered sets with
dimension at most n [8].

Additionally, by Lemma 3.2, the ordered sets in T (n, n, 0) are exactly
the class of ordered sets with interval-order-dimension at most n [8].
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In particular, T (1, 1, 0) is the class of interval orders and T (2, 2, 0) is
the class of trapezoid orders [2, 6]. Indeed, the elements in a pleasant
(1, 1, 0)-tube representation are intervals, and the elements in a pleasant
(2, 2, 0)-tube representation are trapezoids. Similarly, the elements in
a pleasant (2, 1, 0)-tube representation are triangles, so T (2, 1, 0) is the
class of triangle orders [7].

In this paper, we are primarily interested in containment relations
between classes of (n, i, f)-tube orders. We represent this information
succinctly by considering the ordered set T of classes of (n, i, f)-tube
orders, where T (n1, i1, f1) <T T (n2, i2, f2) if and only if T (n1, i1, f1) ⊆
T (n2, i2, f2). Ryan proved that the interval orders are properly con-
tained in the triangle orders, and the triangle orders are properly con-
tained in the trapezoid orders [7]. Therefore T (1, 1, 0) �T T (2, 1, 0), and
T (2, 1, 0) �T T (2, 2, 0). Further, by the remarks above, T (n1, 0, 0) �T
T (n2, 0, 0) and T (n1, n1, 0) �T T (n2, n2, 0) for n1 < n2 [8].

Suppose P is an ordered set. If n is the smallest positive integer
such that there exist some numbers i and f for which P is an (n, i, f)-
tube order, then Habib, Kelly, and Möhring call P an ordered set with
tube dimension n [3]. They proved that being an ordered set with tube
dimension n is a comparability invariant for positive integers n, so the
results in this paper hold for the corresponding classes (n, i, f)-tube
graphs as well.

4. Containment Relations Between Tube Orders

Lemma 4.1. If P is an (n1, i, f)-tube order, then P is an (n2, i, f)-tube
order if n1 < n2.

Proof. Let P be an (n1, i, f)-tube order. There exists a (n1, i, f)-tube
representation (T, R) of P . We consider T as lying in n2-dimensional
space. We form the n2-tube T ′ by adding n2−n1 baselines to T so that
all n2 baselines are parallel and otherwise in general position in n2-
space. Next, we choose points {xp}k on each new baseline Bk, indexed
by the elements of P , so that the x1-coordinate of the point xpk is to
the left of the x1-coordinate of the point xqk if p < q, for all n1 + 1 ≤
k ≤ n2. Form the new polytope p′ by taking the convex hull of the
points {xp} and p. Let R′ be the set of polytopes {p′}, ordered by
the standard ordering. We know that R′ ∼= P since the ordered set R′
is formed by taking the intersection of R with some extensions of R.
Therefore (T ′, R′) is an (n2, i, f)-tube representation of P , and so P is
an (n2, i, f)-tube order.
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Lemma 4.2. If P is an (n, i1, f)-tube order, then P is an (n, i2, f)-tube
order if i1 < i2.

Proof. Let P be an (n, i1, f)-tube order. P has an (n, i1, f)-tube repre-
sentation, which is also an (n, i2, f)-tube representation. Therefore P
is an (n, i2, f)-tube order.

Lemma 4.3. If P is an (n, i, f1)-tube order, then P is an (n, i, f2)-tube
order if f1 < f2.

Proof. Let P be an (n, i, f1)-tube order. P has an (n, i, f1)-tube repre-
sentation, which is also an (n, i, f2)-tube representation. Therefore P
is an (n, i, f2)-tube order.

Lemma 4.4. If P is an (n1, i1, f1)-tube order, then P is an (n2, i2, f2)-
tube order if n1 ≤ n2, i1 ≤ i2, and f1 ≤ f2.

Proof. Let P be an (n1, i1, f1)-tube order. By Lemma 4.1, P is an
(n2, i1, f1)-tube order. By Lemma 4.2, P is an (n2, i2, f1)-tube order.
Finally, by Lemma 4.3, P is an (n2, i2, f2)-tube order.

The next lemma is a generalization of Lemma 4.3.

Lemma 4.5. If P is an (n, i1, f1)-tube order, then P is an (n, i2, f2)-
tube order if f1 ≤ f2 and i1 + f1 ≤ i2 + f2.

Proof. Let P be an (n, i1, f1)-tube order, and let (T, R) be a pleasant
(n, i1, f1)-tube representation of P . Since (T, R) is pleasant, each poly-
tope in R has a base of positive length on exactly i1 baselines of T , and
has exactly f1 free vertices.

If i1 ≤ i2 then the statement is true by Lemmas 4.2 and 4.3. There-
fore we may assume that i1 > i2. For each polytope p in R, we choose
i1−i2 baselines on which p has a base of positive length, and an endpoint
of each of those bases. These are i1 − i2 bound vertices of p.

Let v−k (p) be one of these vertices. We choose a positive number ε
such that all polytopes other than p either contain or are disjoint from
a ball B of radius ε centered at v−k (p). We choose a point x in B and in
the interior of T . We then redefine p by replacing v−k (p) with the point
x, and letting the new p be the convex hull of every other vertex of p
and x. The new polytope p still intersects the same set of polytopes
in R as it did previously. We repeat this process for every one of the
chosen vertices.

Each polytope in R now intersects exactly i1−(i1−i2) = i2 baselines
of T in intervals, and has exactly f1 + i1 − i2 free vertices. Therefore
(T, R) is an (n, i2, f1 + i1− i2)-tube representation of P . Since f1 + i1−
i2 ≤ f2 by the hypothesis, (T, R) is also an (n, i2, f2)-representation of
P .
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Suppose that x is a free vertex of a polytope p in a tube of (n, i, f)-
polytopes (T, R). Let L be the unique line parallel to the baselines of T
and containing x. We say that x is left-pointing if x is the left endpoint
of the interval p ∩ L. We say that p is left-pointing if every one of its
free vertices is left-pointing. We say that R is left-pointing if every one
of its polytopes is left-pointing.

In [4], we defined an asterisk in a tube of (2, 2, 0)-polytopes to be an
ordered triple of three polytopes (p, q, r), such that x+

2 (p) < x+
2 (q) <

x+
2 (r) and x+

1 (r) < x+
1 (q) < x+

1 (p). We denoted the unique left and
right edges of a polygon in a tube of (2, 2, 0)-polytopes by e−(t) and
e+(t), respectively. We proved the following.

Lemma 4.6. Every (2, 2, 0)-tube order P has a (2, 2, 0)-tube represen-
tation (R, T ) that satisfies the following property:

Property A. For every asterisk (p, q, r) in R, e+(q) passes to the left
of the intersection of e+(p) and e+(r).

We generalize lemma 4.6 as follows:

Lemma 4.7. Every (n, i, 0)-tube order P has an (n, i, 0)-tube represen-
tation (R, T ) that satisfies the following property:

Property B. For every face fij(T ) of T , the induced (2, 2, 0)-tube rep-
resentation on fij(T ) satisfies Property A.

Proof. In Lemma 4.6, we obtained (R, T ) by starting with an arbitrary
(2, 2, 0)-tube representation of P , and applying the function φ(x, y) =
(3x, y). Starting with an (n, i, 0)-tube representation (R′, T ′) of P , we
apply the function φ(x1, . . . , xn) = (33...3x1

, . . . , 3xn−1 , xn) to T ′ to
obtain a (n, i, 0)-tube representation (R, T ) of P with Property B.

We then proved the following.

Theorem 4.8. If (R, T ) is a (2, 2, 0)-tube representation of an or-
dered set P which satisfies Property A, then there exists a left-pointing
(2, 0, 1)-tube representation (R′, T ′) of P .

We generalize Theorem 4.8 as follows.

Theorem 4.9. If P is an (n, i, 0)-tube order, then P is an (n, i −
2, 1)-tube order if i ≥ 2.

Proof. Let (R, T ) be an (n, i, 0)-tube representation of P satisfying
Property B. Since no polytope in R has any free vertices, each polytope
in R is determined by its intersection with the faces of T . We choose a
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10 Joshua D. Laison

face f of T and form the tube of (2, 2, 0)-polytopes induced by the
faces of the polytopes in R. Since (R, T ) satisfies Property B, the
induced tube of (2, 2, 0)-polytopes in f satisfies Property A, so we can
apply Theorem 4.8 to form a tube of (2, 0, 1)-polytopes with the same
standard ordering. Note that Theorem 4.8 still works even if some of the
polygons in f are actually line segments. We then repeat the process
with another face of T , but we leave any polytope already modified
in the previous face unchanged. Since we can apply Theorem 4.8 to
the (2, 2, 0)-polytopes in a given face in any order we wish, and the
standard ordering on R is the same after each one, we can stop this
process whenever we wish. We stop when we have modified a face of
every polytope in R exactly once.

We then take the convex hull of each of the new faces to obtain a
new set of polytopes R′. Since R′ is also determined by its intersection
with the faces of T , (R′, T ) is a tube representation of P . Since each
polytope p in R had at least two intervals of positive length along two
of the baselines of T , p has exactly two less in R′. Therefore (R′, T ) is
an (n, i− 2, 1)-tube representation of P .

Notice that the (n, i − 2, 1)-tube representation we obtained in the
proof of Theorem 4.9 does not use the full power of an (n, i − 2, 1)-
tube representation, since the free vertices of each polytope still lie on
the boundary of the tube. This suggests that we might use the free
vertices more efficiently to obtain, for example, an (n, i − 3, 1)-tube
representation of every (n, i, 0)-tube order. At the present time, we
have not been able to do this.

5. Separating Examples for Distinct Values of n

Now we turn our attention to the cases for which we can prove T (n1, i1, f1) 6⊆
T (n2, i2, f2). In each case, we build an example that will serve to
distinguish two classes of tube orders.

Recall that the ordered set Sn, the standard example of an n-
dimensional ordered set, contains the 1-element and (n − 1)-element
subsets of [n], ordered by inclusion. We denote by S+

n the lexicographic
sum of {2, . . . ,2} over the ordered set Sn. In other words, we replace
every element in Sn with a chain of length 2. We denote an element of
S+

n by its row and column in the diagram, as shown in Figure 5.
Recall that if (T, R) is a tube of (n, i, f)-polytopes and Bα is a

baseline of T , then we denote by Iα the ordered set of the intervals
{pα}, p ∈ R, with the standard ordering.
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(1,4) (2,4) (3,4) (4,4)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

Figure 5. The ordered set S+
4

Lemma 5.1. Let (T, R) be an (n, i, f)-tube representation of S+
n , and

reference the elements of R according to Figure 5. Then for each k ∈ [n],
there exists a baseline Bα of T such that (k, 2)α is not entirely to the
left of (k, 3)α.

Proof. Suppose to the contrary that (k, 2)α <Iα (k, 3)α on every base-
line Bα of T . Let xα be a point in (k, 2)α for each l = 1, . . . , n, and
let p be the simplex formed by the convex hull of the points {xα}.
Since (k, 2) is convex, p ⊆ (k, 2). Since (k, 1) <R (k, 2), it follows that
(k, 1) <R p. Similarly, let yα be a point in (k, 3)α for each l = 1, . . . , n,
and let q be the simplex formed by the convex hull of the points {yα}.
Since (k, 3) is convex, q ⊆ (k, 3), and since (k, 3) <R (k, 4), q <R (k, 4).

Since (k2)α <Iα (k, 3) on every baseline Bα of R, p <R q, which
implies that (k, 1) <R (k, 4). But this is a contradiction, since (k, 1) ‖R

(k, 4). Therefore there must be some baseline Bα on which (k, 2)α is
not entirely to the left of (k, 3)α.

Lemma 5.2. Let (T, R) be an (n, i, f)-tube representation of S+
n , and

reference the elements of R according to Figure 5. Then it is not possible
that both (k, 2)α < (k, 3)α and (j, 2)α < (j, 3)α on the same baseline Bα

of T if k 6= j.

Proof. Suppose that (k, 2)α 6<Iα (k, 3)α and (j, 2)α 6<Iα (j, 3)α on the
same baseline Bα of R. If (k, 3)α <Iα (k, 2)α then (j, 2)α <R (k, 3)α <Iα

(k, 2)α <R (j, 3)α 6>Iα (j, 2)α is a contradiction, and if (j, 3)α <Iα

(j, 2)α then (k, 2)α <R (j, 3))l <Iα (j, 2)α <R (k, 3)α 6>Iα (k, 2)α is
a contradiction. Therefore (k, 2)α overlaps (k, 3)α and (j, 2)α overlaps
(j, 3)α. But this is also a contradiction, because this implies that the
induced suborder of Iα on the elements (k, 2), (k, 3)α, (j, 2)α, and (j, 3)α
forms a 2 + 2, which is impossible since Iα is an interval order.
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12 Joshua D. Laison

Theorem 5.3. The ordered set S+
n2

is an (n2, i, f)-tube order and not
an (n1, i, f)-tube order if n1 < n2, for all i and f for which (n, i, f)-tube
orders are defined.

Proof. Sn2 has dimension n2. Therefore let R1, . . . Rn2 be a realizer of
Sn2 . We form the lexicographic sum R′

k of {2, . . . ,2} over Rk for each
k = 1, . . . , n. The new set of linear orders R′

1, . . . , R
′
n2

is a realizer of
S+

n2
, so S+

n2
is at most n2-dimensional. Since T (n2, 0, 0) is precisely the

class of ordered sets of dimension n2 or less for n2 > 1 and contains
the linear orders when n2 = 1, S+

n2
is an (n2, 0, 0)-tube order. Therefore

S+
n2

is an (n2, i, f)-tube order by Lemmas 4.2 and 4.3.
It remains to show that S+

n2
is not an (n1, i, f)-tube order. Suppose

that (T, R) is an (m, i, f)-tube representation of S+
n2

for some m. Again
we use the notation of Figure 5. By Lemma 5.1, for each k ∈ [n2], there
exists a baseline Bα of T such that k, 2α 6<Iα k, 3α. By Lemma 5.2, this
baseline is distinct for each k ∈ [n2]. Since there are n2 pairs of elements
of this form, it follows that T has at least n2 baselines. Therefore S+

n2

is not an (n1, i, f)-tube order if n1 < n2, for all i and f for which
(n, i, f)-tube orders are defined.

6. Separating Examples for Distinct Values of i

We form the ordered set Interval(n, i) in the following way. Interval(n, i)
will be the union of the two disjoint sets A and B, and the additional
element x. We start with two copies of S+

n , denoted A′ and B′, with
every element of A′ less than every element of B′. We add the element
x, which is less than all of the maximal elements of B′, less than n− i
elements covered by these elements, greater than all of the minimal
elements of A′, and incomparable to every other element of A′ and B′.
For each maximal element b of B′, we add an element b′ to B′ greater
than b, greater than the set of elements {y|y < b}, and incomparable
to every other element of Interval(n, i). The set B′ together with all of
the elements b′ forms the set B. Finally, for every minimal element a of
A′, we add an element a′ to A′ less than a, less than the set of elements
{y|a < y}, and incomparable to every other element of Interval(n, i).
The set A′ together with all of the elements a′ forms the set A. We
denote an element of A or B by its row and column in the diagram of
Interval(n, i), as in Figure 6.

Theorem 6.1. The ordered set Interval(n, i2) is an (n, i2, 0)-tube or-
der and not an (n, i1, 0)-tube order if i1 < i2.
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Tube Representations of Ordered Sets 13

x

A

B

(1,10) (2,10) (3,10) (4,10)

(1,9) (2,9) (3,9) (4,9)

(1,8) (2,8) (3,8) (4,8)

(1,7) (2,7) (3,7) (4,7)

(1,6) (2,6) (3,6) (4,6)

(1,5) (2,5) (3,5) (4,5)

(1,4) (2,4) (3,4) (4,4)

(1,3)(1,3) (2,3) (3,3) (4,3)

(1,1) (2,1) (3,1) (4,1)

(1,2) (2,2) (3,2) (4,2)

Figure 6. The ordered set Interval(4, 3)

Proof. First we show that Interval(n, i2) is an (n, i2, 0)-tube order by
constructing an (n, i2, 0)-tube representation (T, R) of Interval(n, i2).
We will do this by defining each of the ordered sets of intervals Ik for
each k = 1 . . . n. Then we define the polytope p to be the convex hull
of the intervals labelled p on each of the n baselines of T .
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14 Joshua D. Laison

On the first i2 baselines, we define Ik to be the interval representa-
tion in Figure 7. We use the notation (j, m) to denote the set of intervals
{(j,m)|j 6= k}. These intervals will be identical in Ik, in fact, they will
all be the same point. On the remaining baselines, we define Ik to be
the interval order in Figure 8, using the same notation. One can check
that the ordered set R is isomorphic to the ordered set Interval(n, i2).

x

(j,1) (j,2) (j,3) (k,4)(k,5)(k,1)(k,2)(k,3)(j,4) (j,6) (j,7)(j,5) (k,7)(j,8) (j,9)(k,8)(k,9)(k,10)(k,6) (j,10)

Figure 7. The baseline Bk of the (n, i2, 0)-tube representation (T, R), for the values
1 ≤ k ≤ i2

x(j,1) (j,2) (j,3) (k,4)(k,5)(k,1)(k,2)(k,3)(j,4) (j,6) (j,7)(j,5) (k,7)(j,8) (j,9)(k,8) (k,9)(k,10)(k,6) (j,10)

Figure 8. The baseline Bk of the (n, i2, 0)-tube representation (T, R), i2 +1 ≤ k ≤ n

Now we will show that Interval(n, i2) is not an (n, i1, 0)-tube order
if i1 < i2. We show that in any (n, i, 0)-tube representation (T, R) of
Interval(n, i2), the polytope labelled x must have two vertices on at
least i2 baselines. This will be sufficient to show that Interval(n, i2)
is not an (n, i1, 0)-tube order if i1 < i2. We note that in any tube of
(n, i, 0)-polytopes, if any two polytopes intersect, they must intersect
on some baseline.

First, since for each 1 ≤ k ≤ n, x||R(k, 3) and x||R(k, 8), there is
some baseline Bα of R for which xα is not greater than (k, 3)α, and
some baseline Bβ of R for which xβ is not less than (k, 8)β. We claim
that xα must be less than one of the intervals (k, 3)α and (j, 3)α if
k 6= j.

For each 1 ≤ k ≤ n, there is some baseline Bα for which (k, 1)α is not
less than (k, 5)α. If (k, 1)α intersects (k, 5)α and (k, 4)α also intersects
(k, 2)α, then the induced suborder of Iα on the set {(k, 1)α, (k, 2)α,
(k, 4)α, (k, 5)α} would be a 2 + 2, which is impossible since Iα is an
interval order. On the other hand, if (k, 1)α is greater than (k, 5)α,
then (k, 2)α must also be greater than (k, 4)α. Therefore, (k, 4)α must
be less than (k, 2)α.

Therefore if j 6= k we have (j, 3)α < (k, 4)α < (k, 2)α < xα, which
implies that (j, 3)α < xα on Bα. Since there are n− 1 baselines of this
form, (j, 3)α must not be less than xα on the same baseline Bα on which
(j, 1)α is not less than (j, 5)α.

However, we cannot have both (k, 1)α 6< (k, 5)α and (j, 1)α 6< (j, 5)α

on the same baseline Bα by Lemma 5.2. Therefore (k, 3)α 6< xα for
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Tube Representations of Ordered Sets 15

some k on each baseline Bα, for all 1 ≤ a ≤ n. By a similar argument,
xβ 6< (k, 8)β for at least i2 distinct values of b. Therefore (k, 3)α 6< xα 6<
(k, 8)α for at least i2 baselines of T , and since (k, 3) <R (k, 8), x must
intersect these baselines in an interval of positive length. Therefore x
has two vertices on at least i2 baselines of T .

7. Separating Examples for Distinct Values of f

We form the ordered set Free(f, m) as the union of the three disjoint
ordered sets A, B, and C. A and B are both antichains, the sizes of
which depend on the size of C, as described below. C is the (parallel)
sum of m copies of 2, denoted c(k, 1) and c(k, 2), for 1 ≤ k ≤ m. For
each of these 2-chains, there is one element bk of B incomparable to
c(k, 1) and c(k, 2), and less than every other element in C. For each
subset S of size f of [m], there is one element of A incomparable to
{c(k, 1), c(k, 2)|k ∈ S}, and less than every other element in C. Finally,
every element of A is incomparable to every element of B.

b1 b2 b3 b4

a1 a2

b5

a10 A

B

C

c(1,2) c(3,2)c(2,2) c(5,2)c(4,2)

c(1,1)(1 c(3,1)c(2,1) c(5,1)c(4,1)

Figure 9. The ordered set Free(2, 5)

We call a polytope p in a tube of (n, i, f)-polytopes (T, R) left-visible
(respectively, right-visible) with respect to a set of polytopes S in R
if p − S is nonempty and there exists a line L contained in T and
parallel to its baselines on which s 6<L p−S for all s ∈ S (respectively,
s 6>L p− S for all s ∈ S). More generally, a subset s of T is left-visible
(respectively, right-visible) with respect to a subset t of T if s − t is
nonempty and there exists a line L contained in T and parallel to its
baselines on which t 6<L s− t (respectively, t 6>L s− t).
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16 Joshua D. Laison

Lemma 7.1. The ordered set Free(f,m) is a (2, 0, f)-tube order for
all m > 0.

Proof. We construct a (2, 0, f)-tube representation (T, R) of Free(f, m).
We start by placing the polygons in C so that every polygon of the
form c(k, 1) in C is left-visible with respect to C − {c(k, 1)}, and
every polygon of the form c(k, 2) in C is left-visible with respect to
C − {c(k, 1), c(k, 2)}. We do this by letting the polygons c(k, 1) and
c(k, 2) be parallel line segments, as in Figure 10.

c(1,1)c(1,2) c(2,1)c(2,2) c(3,1)c(3,2) c(4,1)c(4,2) c(5,1)c(5,2)

Figure 10. The elements of C in the (2, 0, f)-tube representation (T, R)

We now place the polygons in A and B. The polygons in B should
each intersect exactly one pair of polygons c(k, 1) and c(k, 2) in C, and
they have f > 0 free vertices. Since c(k, 1) and c(k, 2) are left-visible
with respect to the other elements of C, we place the element of B
so that they intersect the required two elements of C in the regions
c(k, 1)− {c(j, 1), c(j, 2)|j 6= k} and c(k, 2)− {c(j, 1), c(j, 2)|j 6= k}.

Since the polygons in A should each intersect f elements of C, and
each polygon in A has f free vertices, we place these polygons so that
they intersect the required elements of C by using one free vertex
for each pair of parallel lines c(k, 1) and c(k, 2), as in Figure 11. The
convexity of the region to the left of the set {c(k, 2)|1 ≤ k ≤ m} and the
fact that we can choose the distances between the parallel lines c(k, 1)
and c(k, 2) arbitrarily guarantees that we may place the free vertices
of the polygons in A and B so that we get exactly the intersections we
want.

a

c(1,1)c(1,2) c(2,1)c(2,2) c(3,1)c(3,2) c(4,1)c(4,2) c(5,1)c(5,2)

Figure 11. Placing an arbitrary element of A

tube_paper_notation1.tex; 18/11/2003; 10:38; p.16



Tube Representations of Ordered Sets 17

p2 p3 p1 p4 p5

T S

x

Figure 12. The region S for n = 2

Lemma 7.2. Suppose that (T,R) is an (n, i, f)-tube representation,
and p1, . . . , pk are elements of R such that pj is left-visible with respect
to R − pj, for all 1 ≤ j ≤ k. Let S = {x|x ∈ T, x ≥ p1, x ≤ p2, . . . , pk}
and U = {x|x ∈ p1, x ≤ p2, . . . , pk}. Then pm∩S 6= ∅ implies pm∩U 6=
∅, for all 1 ≤ m ≤ k.

Proof. Suppose that pm ∩ S 6= ∅ but pm ∩ U = ∅, as in Figure 12.
Then p1 ∩ S < pm ∩ S, by the definition of S. Let V = {x|x ∈ T, x ≤
p2, . . . , pk}. Then pm ∩ V contains pm ∩ S. In fact, since pm and V
are both convex, and pm does not intersect U , which is the boundary
between S and V − S, we must have pm ∩ V = pm ∩ S. But since
p1 ∩ S < pm ∩ S, we must have p1 < pm ∩ V , and therefore pm is not
left-visible with respect to R − pm. This contradicts our assumption
that pm is one of the elements p1, . . . , pk. Therefore pm ∩S 6= ∅ implies
pm ∩ U 6= ∅, for all 1 ≤ m ≤ k.

Theorem 7.3. The ordered set Free(f2, 2f2 + 1) is a (2, 0, f2)-tube
order and not a (2, 2, f1)-tube order if f1 < f2.

Proof. By Lemma 7.1, Free(f2, 2f2 + 1) is a (2, 0, f2)-tube order. Sup-
pose that f1 < f2, and that (T, R) is a (2, 2, f1)-tube representation of
Free(f2, 2f2 + 1). Let c(k, 1) and c(k, 2) be a comparable pair of C.
Let lk be the line segment connecting v1l(c(k, 1)) and v2l(c(k, 1)) in R.
Since lk ⊂ c(k, 1), we know that lk < c(k, 2). Since bk intersects c(k, 2),
but is less than every polytope in the set {c(j, 1)|j 6= k}, it follows
that bk intersects lk, but bk < lj for all j 6= k. Therefore lk must be
left-visible with respect to the set {lj |j 6= k}.

Since the set {x|x ≤ lj , j 6= k} is a convex region, the set sk =
{x|x ∈ lk, x ≤ lj , j 6= k} is a line segment. Let s =

⋃
sk. Since sk

ends where another line segment lj crosses lk, s is a piecewise-linear
curve with endpoints on B1 and B2. Note that every horizontal line
L in T intersects s exactly once. Note also that s < c(k, 2) for all
1 ≤ k ≤ 2f2 + 1.
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18 Joshua D. Laison

For ease of reference, we renumber {c(k, 1)}, {c(k, 2)}, {lk} and {sk}
in the order that the sk’s appear in s, starting with the line segment
intersecting B1 and ending with the line segment intersecting B2. After
this renumbering, there exists an element a ∈ A such that a||c(k, 1) and
a||c(k, 2) if and only if k is even. In other words, a must not intersect
l1, intersect l2, not intersect l3, intersect l4, and so on. Since the only
points in lk that are left-visible with respect to lj , j 6= k, are contained
in sk, a intersects sk if and only if k is even.

Since a cannot contain the endpoints of these sk’s, a must have a
free vertex to the right of each sk for which k is even. However, there
are f2 such line segments, and a has only f1 free vertices. We have
obtained a contradiction.

a

c(1,1)c(1,2) c(2,1)c(2,2) c(3,1)c(3,2) c(4,1)c(4,2) c(5,1)c(5,2)

Figure 13. Placing the element a

Recall that the Ramsey number R(k, j) is the smallest number of
vertices for which every graph on R(k, j) vertices has either a clique of
size k or an independent set of size j [5]. In particular, since no graph
containing a clique of size 5 is planar, every planar graph with R(5, k)
vertices has an independent set of size k.

Theorem 7.4. The ordered set Free(f2, R(5, f2)) is a (3, 0, f2)-tube
order and not a (3, 3, f1)-tube order if f1 < f2.

Proof. The ordered set Free(f2, R(5, f2)) is a (2, 0, f2)-tube order by
Lemma 7.1. Therefore the ordered set Free(f2, R(5, f2)) is a (3, 0, f2)-
tube order by Lemma 4.1.

Suppose that f1 < f2 and (T,R) is a (3, 3, f1)-tube representation
of Free(f2, R(5, f2)). Let c(k, 1) and c(k, 2) be a comparable pair in
C. Let tk be the triangle in R with vertices v1,l(c(k, 1)), v2,l(c(k, 1)),
and v3,l(c(k, 1)). Since tk ⊂ c(k, 1), we know that tk < c(k, 2). Since bk

intersects c(k, 2), but is less than every polytope in the set {c(j, 1)|j 6=
k}, it follows that bk intersects tk, but bk < tj for all j 6= k. Therefore
tk must be left-visible with respect to the set {tj |j 6= k}.

Since the set {x|x ≤ tj , j 6= k} is a convex region, the set sk = {x|x ∈
tk, x ≤ tj , j 6= k} is a convex polygon. Let s =

⋃
sk. Since the edges of

sk occur at the intersections of sk with another convex polygon sj , s is
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Tube Representations of Ordered Sets 19

a piecewise-linear surface. Again, every horizontal line L in T intersects
s exactly once. Note also that s < c(k, 2) for all 1 ≤ k ≤ R(5, f2).

We form a graph G with the polygons sk as vertices. We include the
edge {sk, sj} in G if and only if sk intersects sj . The graph G is planar
and has R(5, f2) vertices. Therefore, it has an independent set I of size
f2.

For ease of reference, we renumber {c(k, 1)}, {c(k, 2)}, {lk} and {sk}
so that I = {s1, . . . , sf2}. After this renumbering, there exists an ele-
ment a ∈ A such that a||c(k, 1) and a||c(k, 2) if and only if 1 ≤ k ≤ f2.
Since the only points in tk that are left-visible with respect to tj , j 6= k,
are contained in sk, a intersects sk if and only if 1 ≤ k ≤ f2.

Since a cannot contain the boundaries of these sk’s, a must have a
free vertex to the right of each sk for which 1 ≤ k ≤ f2. However, there
are f2 such triangles, and a has only f1 free vertices. We have obtained
a contradiction.

The technique we have used to show that Free(f2, 2f2 + 1) is not
a (2, 2, f1)-tube order for f1 < f2 and that Free(f2, R(5, f2)) is not a
(3, 3, f1)-tube order for f1 < f2 does not carry over into four dimen-
sions. In the analogous situation in a 4-tube, the objects sk that appear
in the proofs of Theorem 7.3 and Theorem 7.4 are convex polyhedra
filling the interior of a tetrahedron. In dimensions two and three, we
were able to claim that the objects sk were separated by some space,
requiring a different free vertex of a to overlap each one. In the four-
dimensional case, it is possible that the convex polyhedra are pairwise
adjacent no matter how many of them there are. Therefore, a new
technique is needed if we wish to prove T (4, i, f2) 6⊆ T (4, i, f1) for
f1 < f2.

8. Separating Examples Involving Both i and f

The following example separates two classes of tube orders by their
values of i, but uses techniques from the last two sections.

We form the ordered set FreeInt(n, i, f,m) as the union of three
disjoint ordered sets X, Y , and Z. X is isomorphic to the subset A
of Interval(n, i) from Section 6. Y is isomorphic to the ordered set
Free(f, m) from Section 7. Thus, Y is the union of the sets A, B,
and C of Free(f, m). When we refer to the subsets A, B, and C of
FreeInt(n, i, f, m), we will mean these subsets of Y . Z is isomorphic
to the subset B of Interval(n, i) from Example 6. We use the nota-
tion x(k, j), y(k, j), and z(k, j) to reference elements of X, Y , and Z,
according to their row and column in the diagram, as in Figure 14.
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20 Joshua D. Laison

Every element of B and C is incomparable to every element of Z.
Every element of B and C is greater than every element of X. Every
element of X is less than every element of Z. Finally, every element of A
is less than the elements {z(k, 10), z(k, 9)|k = 1, . . . , n} and {z(j, 8)|j =
i+1, . . . , n} of Z, greater than the elements {x(k, 1), x(k, 2)|k = 1, . . . , n}
in X, and incomparable to the remaining elements of X and Z.

z(1,10)

Z

X

C

B

A

c(1,2) c(3,2)c(2,2)

c(1,1) c(3,1)c(2,1)

b1 b2 b33

a1 a2 a3

z(2,10) z(3,10)

z(1,9) z(2,9) z(3,9)

z(1,8)(1,8)

z(2,8) z(3,8)

z(1,7) z(2,7) z(3,7)

z(1,6) z(2,6) z(3,6)

x(1,5) x(2,5) x(3,5)

x(1,4) x(2,4) x(3,4)

x(1,3) x(2,3) x(3,3)

x(1,2) x(2,2) x(3,2)

x(1,1) x(2,1) x(3,1)

Figure 14. The ordered set FreeInt(3, 2, 1, 3)

Theorem 8.1. The ordered set FreeInt(2, i2, f, 2f + 1) is a (2, i2, f)-
tube order and not a (2, i1, f)-tube order if i1 < i2.
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Proof. Note that X∪a∪Z ∼= Interval(2, i2) for each a ∈ A. By Theorem
6.1, let (R0, T ) be a (2, i2, 0)-tube representation of X ∪ a∪Z for some
a ∈ A. We then let (R1, T ) be the (2, i2, 0)-tube representation of X ∪
A ∪ Z obtained from R0 by including

(2f+1
f

)
identical copies of the

polygon a, one for each element of A. Since the elements of A are
pairwise incomparable, R1

∼= X ∪A ∪ Z.
Note also that A ∪ B ∪ C ∼= Free(f, 2f + 1). By Theorem 7.3, let

(R2, T ) be a (2, 0, f)-tube representation of A∪B ∪C. Without loss of
generality, we may choose R2 so that b, c ∩ z 6= ∅ for all c ∈ C ⊂ R2,
b ∈ B ⊂ S, and z ∈ Z ⊂ R1, and b, c ∩ x = ∅ for all c ∈ C ⊂ R2,
b ∈ B ⊂ S, and x ∈ X ⊂ R1.

Now for each a ∈ A, let a′ be the convex hull of the polytope a ∈ R1

and the free vertices of the polytope a ∈ R2. Let R = (R1 − A) ∪
(R2 − A) ∪ {a′}. We claim that R ∼= FreeInt(2, i2, f, 2f + 1). Since
R1

∼= X ∪A∪Z and R2
∼= A∪B ∪C, we need only check the relations

between B and X, B and Z, C and X, and C and Z. But by our choice
of R2, these relations agree with FreeInt(2, i2, f, 2f + 1) as well.

a

X Z

b

C

Figure 15. The (2, i2, 0)-tube representation R2

We now show that FreeInt(2, i2, f, 2f + 1) is not a (2, i1, f)-tube
order if i1 < i2. Assume that (T, R) is a (2, i1, f)-tube representation
of FreeInt(2, i2, f, 2f + 1), i1 < i2. By Theorem 7.3, there exists an
element a ∈ A and elements c(1, i1), . . . , c(1, if ) such that each of the
free vertices vf1(a), . . . , vff

(a) of a intersects a distinct polygon c(1, ik),
1 ≤ k ≤ f . Each of these vertices is therefore greater than every
polygon in X. Also, each of these vertices is less than every polygon
in Z by Lemma 7.2. Therefore for every element x ∈ X ∪ Z for which
a||x, a ∩ x contains points in B1 or B2. However, as we have noted,
X ∪ a ∪ Z ∼= Interval(n, i). Therefore by Theorem 6.1, a contains an
interval of positive length on at least i2 of the baselines B1 and B2.
This contradicts our assumption that i1 > i2.

Theorem 8.2. The ordered set FreeInt(3, i2, f, R(5, f)) is a (3, i2, f)-
tube order and not a (3, i1, f)-tube order if i1 < i2.
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Proof. We construct a (3, i2, f)-tube representation (T, R) of FreeInt(3, i2, f, R(5, f))
as follows. By Theorem 8.1, let (R0, T0) be a (2, i2, f)-tube represen-
tation of FreeInt(2, i2, f, R(5, f)). Let (I3, B3) be the (1, 1, 0)-tube
representation shown in Figure 16 and (I ′3, B3) be the (1, 1, 0)-tube
representation shown in Figure 17. Let B3 be parallel but disjoint from
R0, and let T be the 3-tube formed by taking the convex hull of B3

and R0. If i2 = 3, let R be the (3, i2, f)-tube representation formed by
taking the convex hull of each polytope in R0 with its corresponding
line segment in I3. If i2 ∈ {0, 1, 2}, let R be the (3, i2, f)-tube represen-
tation formed by taking the convex hull of each polytope in R0 with
its corresponding line segment in I ′3.

One can check that R is a (3, i2, f)-tube representation of FreeInt(3, i2, f, R(5, f)).

a

x(1,1) x(1,2) x(1,3)x(3,4)x(3,5)x(3,1)x(3,2)x(3,3)x(1,4) x(1,5) z(1,6)z(1,7)z(3,8)z(3,9)z(3,10) z(3,6) z(3,7) z(1,8) z(1,9) z(1,10)b c

x(2,1) x(2,2) x(2,3) x(2,4) x(2,5) z(2,6) z(2,7) z(2,8) z(2,9) z(2,10)

Figure 16. The baseline B3 of the (3, 3, f)-tube representation R

ax(1,1) x(1,2) x(1,3)x(3,4)x(3,5)x(3,1)x(3,2)x(3,3)x(1,4) x(1,5) z(1,6)z(1,7)z(3,8) z(3,9)z(3,10) z(3,6) z(3,7) z(1,8) z(1,9) z(1,10)b c

x(2,1) x(2,2) x(2,3) x(2,4) x(2,5) z(2,6) z(2,7) z(2,8) z(2,9) z(2,10)

Figure 17. The baseline B3 of the (3, i2, f)-tube representation R, i2 = 0, 1, 2

The proof that FreeInt(3, i2, f, R(5, f)) is not a (3, i1, f)-tube order
if i1 < i2, is identical to the corresponding part of the two-dimensional
case in Theorem 8.1.

9. Separating Examples Involving Distinct Values of n, i,
and f

Lemma 9.1. The ordered set Sk from Section 5 is an (n, i, f)-tube
order if n > 1 and f > 0 and not an (n, i, 0)-tube order if n < k.

Proof. A (2, 0, 1)-tube representation of Sk is shown in Figure 18. There-
fore Sk is a (2, 0, 1)-tube order, and therefore Sk is an (n, i, f)-tube order
if n > 1 and f > 0 by Lemmas 4.1, 4.2 and 4.3.

It is known that Sk has interval-order-dimension k [8]. Therefore Sk

is not a (k−1, k−1, 0)-tube order. Since n < k implies i < k, Sk is not
an (n, i, 0)-tube order if n < k by Lemmas 4.1 and 4.2.

Example 9.2. Consider the set of all closed intervals with endpoints in
[k]. We will denote the ordered set with this (1, 1, 0)-tube representation
by CI(k), and call it the canonical interval order of size k.
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Figure 18. A (2, 0, 1)-tube representation of Sk

The following theorem appears in [8].

Theorem 9.3. The dimension of CI(k) is at least log2log2k + (1
2 +

o(1))log2log2log2k.

Corollary 9.4. The ordered set CI(k) is an (n, i, f)-tube order if i > 0
or f > 0, and not an (n, 0, 0)-tube order for sufficiently large k.

Proof. By definition, CI(k) is a (1, 1, 0)-tube order, and therefore also
a (2, 0, 1)-tube order by Lemmas 4.1 and 4.5. By Lemmas 4.1, 4.2 and
4.3, this implies that CI(k) is also an (n, i, f)-tube order if i > 0 or
f > 0.

On the other hand, given a positive integer n, we can choose k such
that CI(k) has dimension greater than n by Theorem 9.3. Therefore
CI(k) is not an (n, 0, 0)-tube order for this choice of k.

10. Summary

We have described every containment and non-containment currently
known between classes of (n, i, f)-tube orders. We represent this in-
formation succinctly by considering the ordered set T of classes of
(n, i, f)-tube orders, where T (n1, i1, f1) <T T (n2, i2, f2) if and only
if T (n1, i1, f1) ⊆ T (n2, i2, f2).

The following is a table of relations in the ordered set T, together
with the theorem or lemma that implies that relation. All classes of
tube orders with n ≤ 3 and i+f ≤ 3 are listed. Note that each relation
requires two theorems, so any entry in the table listing only one theorem
or lemma is open with regards to the other direction.

T (1, 1, 0) T (2, 0, 0) T (2, 1, 0) T (2, 2, 0)

T (1, 0, 0) �, L4.4, T6.1 �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (1, 1, 0) ||, T5.3, C9.4 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 0, 0) �, L4.4, T5.3 �, L4.4, T6.1

T (2, 1, 0) �, L4.4, T6.1
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T (2, 0, 1) T (2, 1, 1) T (2, 2, 1) T (2, 0, 2)

T (1, 0, 0) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (1, 1, 0) �, L4.5, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3 �, L4.5, L4.4, T5.3

T (2, 0, 0) �, L4.4, T7.3 �, L4.4, T7.3 �, L4.4, T7.3 �, L4.4, T7.3

T (2, 1, 0) �, L4.5, T7.3 �, L4.4, T7.3 �, L4.4, T7.3 �, L4.5, T7.3

T (2, 2, 0) �, T4.8, T7.3 �, L4.5, T7.3 �, L4.4, T7.3 �, L4.5, T7.3

T (2, 0, 1) �, L4.4, T7.3 �, L4.4, T7.3 �, L4.5, T7.3

T (2, 1, 1) �, L4.4, T8.1 �, L4.5, T7.3

T (2, 2, 1) 6>, T7.3

T (2, 1, 2) T (3, 0, 0) T (3, 1, 0) T (3, 2, 0)

T (1, 0, 0) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (1, 1, 0) �, L4.4, T5.3 ||, T5.3, C9.4 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 0, 0) �, L4.4, T7.3 �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 1, 0) �, L4.4, T7.3 ||, T5.3, C9.4 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 2, 0) �, L4.5, T7.3 ||, T5.3, C9.4 6>, T5.3 �, L4.4, T5.3

T (2, 0, 1) �, L4.4, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3

T (2, 1, 1) �, L4.4, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3

T (2, 2, 1) �, L4.5, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3

T (2, 0, 2) �, L4.4, T8.1 ||, T5.3, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3

T (2, 1, 2) ||, T5.3, T7.3 ||, T5.3, T7.3 ||, T5.3, T7.3

T (3, 0, 0) �, L4.4, T6.1 �, L4.4, T6.1

T (3, 1, 0) �, L4.4, T6.1
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T (3, 3, 0) T (3, 0, 1) T (3, 1, 1)

T (1, 0, 0) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (1, 1, 0) �, L4.4, T5.3 �, L4.4, L4.5, T5.3 �, L4.4, T5.3

T (2, 0, 0) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 1, 0) �, L4.4, T5.3 �, L4.4, L4.5, T5.3 �, L4.4, T5.3

T (2, 2, 0) �, L4.4, T5.3 �, L4.4, T4.8, T5.3 �, L4.4, T4.5, T5.3

T (2, 0, 1) ||, T5.3, T7.3 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 1, 1) ||, T5.3, T7.3 6>, T5.3 �, L4.4, T5.3

T (2, 2, 1) ||, T5.3, T7.3 6>, T5.3 6>, T5.3

T (2, 0, 2) ||, T5.3, T7.3 6>, T5.3 6>, T5.3

T (2, 1, 2) ||, T5.3, T7.3 6>, T5.3 6>, T5.3

T (3, 0, 0) �, L4.4, T6.1 �, L4.4, T7.4 �, L4.4, T7.4

T (3, 1, 0) �, L4.4, T6.1 �, L4.5, T7.4 �, L4.4, T7.4

T (3, 2, 0) �, L4.4, T6.1 �, T4.9, T7.4 �, T4.9, L4.4, T7.4

T (3, 3, 0) 6>, T7.4 �, T4.9, T7.4

T (3, 0, 1) �, L4.4, T8.2

T (3, 2, 1) T (3, 0, 2) T (3, 1, 2)

T (1, 0, 0) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (1, 1, 0) �, L4.4, T5.3 �, L4.4, L4.5, T5.3 �, L4.4, T5.3

T (2, 0, 0) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 1, 0) �, L4.4, T5.3 �, L4.4, L4.5, T5.3 �, L4.4, T5.3

T (2, 2, 0) �, L4.4, T5.3 �, L4.4, L4.5, T5.3 �, L4.4, L4.5, T5.3

T (2, 0, 1) �, L4.4, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 1, 1) �, L4.4, T5.3 �, L4.4, L4.5, T5.3 �, L4.4, T5.3

T (2, 2, 1) �, L4.4, T5.3 �, L4.5, L4.4, T5.3 6>, T5.3

T (2, 0, 2) 6>, T5.3 �, L4.4, T5.3 �, L4.4, T5.3

T (2, 1, 2) 6>, T5.3 6>, T5.3 �, L4.4, T5.3

T (3, 0, 0) �, L4.4, T7.4 �, L4.4, T7.4 �, L4.4, T7.4

T (3, 1, 0) �, L4.4, T7.4 �, L4.5, T7.4 �, L4.4, T7.4

T (3, 2, 0) �, L4.4, T7.4 �, T4.5, T7.4 �, T4.5, L4.4, T7.4

T (3, 3, 0) �, T4.9, L4.4, T7.4 �, T4.9, L4.5, T7.4 �, L4.5, T7.4

T (3, 0, 1) �, L4.4, T8.2 �, L4.4, T7.4 �, L4.4, T7.4

T (3, 1, 1) �, L4.4, T8.2 �, L4.5, T7.4 �, L4.4, T7.4

T (3, 2, 1) 6>, T7.4 �, L4.5, T7.4

T (3, 0, 2) �, L4.4, T8.2

We display the order diagram of T in Figure 19. In this diagram,
we use a solid edge to represent a known comparability, a missing edge
to represent a known incomparability, and a dotted edge to represent
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T(1,0,0)

T(1,1,0) T(2,0,0)

T(2,1,0)

T(2,2,0)

T(2,0,1)

T(2,1,1)

T(2,0,2)
T(2,2,1)

T(2,1,2)

T(3,0,0)

T(3,1,0)

T(3,2,0)

T(3,0,1)

T(3,1,1)

T(3,0,2) T(3,2,1) T(4,1,1)

T(4,0,0)

T(4,1,0)

T(4,2,0)T(3,3,0)

T(4,0,1) T(4,3,0)

Figure 19. The classes of tube orders for small values of n, i, and f

an unknown relation. There are clearly an infinite number of classes of
tube orders; we include only the first few values of n, i, and f in the
diagram.

The dotted edges occur more frequently for larger values of n, i,
and f . Of course, we wish to know the relations that are currently
unknown. More significantly, we would like to discover a pattern in the
relations that might lend more insight into general (n, i, f)-tube orders.
The most recently discovered relations between classes of (n, i, f)-tube
orders follow no clear pattern.
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