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Abstract. In this note, we show that Fan’s 1952 lemma on labelled triangulations of the n-sphere with

n + 1 labels is equivalent to the Borsuk-Ulam theorem. Moreover, unlike other Borsuk-Ulam equivalents,

this lemma directly implies Sperner’s Lemma, so this proof may be regarded as a combinatorial version of
the fact that the Borsuk-Ulam theorem implies the Brouwer fixed point theorem, or that the Lusternik-

Schnirelmann-Borsuk theorem implies the KKM lemma.

1. Introduction

The Brouwer fixed point theorem, the Knaster-Kuratowski-Mazurkiewicz (KKM) lemma, and Sperner’s
lemma are known to be equivalent. Equally powerful, they form a triumvirate of theorems whose intercon-
nections have been exploited with great success in fixed point algorithms [12, 14] as well as in game theory
[1]. Similarly, the Borsuk-Ulam theorem, the Lusternik-Schnirelmann-Borsuk (LSB) theorem, and Tucker’s
lemma are another triumvirate of equivalent results. In each of these triples, the first is a topological result,
the second is a set-covering result, and the third is a combinatorial result.

Moreover, these triples are related to each other. Since the Borsuk-Ulam theorem implies the Brouwer fixed
point theorem, any theorem in the second triple must imply any theorem in the first. It is an interesting
question to find direct proofs of each implication. For instance, a topological construction shows how a
Brouwer fixed point follows from Borsuk-Ulam antipodes [11], and with set-coverings the LSB theorem can
be used to directly prove the KKM lemma [9]. But in the combinatorial domain, we are unaware of a direct
proof that Tucker’s lemma implies Sperner’s lemma.

In this article, we show that another combinatorial lemma, Fan’s N+1 Lemma, may be a more natural
combinatorial analogue of the Borsuk-Ulam theorem, and therefore more worthy to sit in the Borsuk-Ulam
triumvirate than Tucker’s lemma. In particular, in Section 3 we show that Fan’s N+1 Lemma is equivalent
to the Borsuk-Ulam theorem, and in Section 4 we exhibit a direct proof that it implies Sperner’s lemma.

2. Background

We first review these theorems. Let Σn be a combinatorial version of the n-sphere, the set of all points
in Rn+1 of length 1 in the L1 norm:

Σn = {(x1, ..., xn+1) :
∑
|xi| = 1}.

In R3, Σ2 is just the boundary of the octahedron. As with the octahedron, note that Σn is naturally
subdivided into orthants; we will study labelled triangulations of Σn that refine the orthant subdivision. A
triangulation is a subdivision by simplices that either meet face-to-face or not at all. Each simplex is the
affine hull of its vertices; these are the vertices of the triangulation. A triangulation of Σn is symmetric if
when σ is a simplex of the triangulation, then −σ is a simplex as well.

Define an m-labelling to be a function ` that assigns to each vertex v one of 2m possible integers:
{±1,±2, . . . ,±m}. A symmetric triangulation of Σn has an anti-symmetric labelling if `(−v) = −`(v)
for all vertices v. A labelling has a complementary edge if some adjacent pair of vertices has labels that sum
to zero, e.g., {+i,−i}.

Call a simplex alternating if its vertex labels are distinct in magnitude and alternate signs, when arranged
in order of increasing value. So the labels have the form

{k1,−k2, k3, . . .} or {−k1, k2,−k3, . . .}
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when 1 ≤ k1 < k2 < k3 < · · · . The first kind is called positive alternating and the second is negative alter-
nating, based on the sign of k1. For instance a triangle labelled {−1,+3,−7} would be negative alternating,
and an edge labelled {+2,−3} would be positive alternating.

Fan’s N+1 Lemma. Let T be a symmetric triangulation of Σn with an (n + 1)-labelling that is anti-
symmetric and has no complementary edge. Then T has a positive alternating n-simplex.

Thus if the boundary of an octahedron (e.g, see Figure 3) has a triangulation anti-symmetrically labelled
by {±1,±2,±3} and no complementary edges, then it must have a {+1,−2,+3} triangle.

We call this Fan’s N+1 Lemma because Fan’s original lemma [4] is more general: it says that for any m-
labelling with the same hypotheses, there are an odd number of positive alternating n-simplices and an equal
number of negative alternating n-simplices. And as [8] shows, the result holds for more general triangulations
of Sn with a constructive proof. When m = n+ 1, an m-labelling has only one kind of positive alternating
simplex— namely, the simplex with labels of every magnitude: {1,−2,+3, . . . , (−1)n(n+ 1)}.

Note that if an anti-symmetric m-labelling has no complementary edge, then m ≥ n + 1, because al-
ternating simplices must have n + 1 different label values (apart from sign). Since an n-labelling is an
(n + 1)-labelling with one label missing, then as noted by Fan [4], the contrapositive of Fan’s N+1 Lemma
yields Tucker’s lemma as a corollary:

Tucker’s Lemma. Let T be a symmetric triangulation of Σn with an n-labelling that is anti-symmetric.
Then T has a complementary edge.

Tucker’s lemma[6, 13] was originally proposed as a combinatorial equivalent of the Borsuk-Ulam theorem
[2]:

Borsuk-Ulam Theorem. Let h : Sn → Rn be a continuous function such that h(−x) = −h(x) for all
x ∈ Sn. Then there exists w ∈ Sn such that h(w) = 0.

A set covering result due to Lusternik-Schnirelman-Borsuk[2, 7] is also equivalent to the Borsuk-Ulam
theorem:

LSB Theorem. Let C1, ..., Cn+1 be a collection of closed sets that cover Sn. Then at least one of the sets
must contain a pair of antipodal points.

These theorems (Fan, Tucker, Borsuk-Ulam, LSB) concern topological or combinatorial n-spheres. The
next three theorems concern topological and combinatorial n-balls.

Let Bn denote an n-ball, the set of all points within unit distance of the origin in Rn. A combinatorial
version of a n-ball is a n-simplex, which is more naturally described by its embedding in Rn+1:

∆n = {(x1, ..., xn+1) : xi ≥ 0,
∑
xi = 1}.

It is homeomorphic to an n-ball. For any v = (v1, ..., vn+1) ∈ ∆n, let

Z(v) = {i : vi 6= 0}
be the set of indices of coordinates of v that are non-zero. Thus in ∆2, Z((0, 1, 0)) = {2} and Z((.3, 0, .7)) =
{1, 3}. Suppose T is a triangulation of ∆n. A Sperner-labelling ` assigns to each vertex v a label from
{1, ..., n+ 1} such that

(1) `(v) ∈ Z(v).

This forces each main vertex of ∆n to have a different label (the index of its one non-zero coordinate),
and any vertex on a face of ∆n can only be labelled by one of the main vertices that span that face. Call
an n-simplex in the triangulation fully-labelled if its vertices have distinct labels (and therefore all labels
{1, ..., n+ 1}).

Sperner’s Lemma. Any Sperner labelled triangulation of ∆n must have a fully-labelled n-simplex.

In fact, there are an odd number of such simplices [10]. Sperner’s lemma provides the simplest route to
proving this famous theorem of Brouwer [3]:

Brouwer Fixed Point Theorem. For any continuous function f : Bn → Sn, there exists a point x ∈ Sn

such that f(x) = x.
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Figure 1. For n = 2, the points w1, w2, w3 and −w1,−w2,−w3 in the hyperplane H. The
shaded region is the image under h of a positive alternating 2-simplex, which contains all
the positive wi (and the origin).

Knaster-Kuratowski-Mazurkiewicz [5] provided the original link between the Brouwer theorem and Sperner’s
lemma:

KKM Lemma. Let C1, ..., Cn be a collection of closed sets that cover ∆n such that for each I ⊆ [n + 1],
the face spanned by the set {ei|i ∈ I} is covered by {Ci|i ∈ I}. Then ∩n

i=1Ci is non-empty.

3. Equivalence of Fan’s N+1 Lemma and the Borsuk-Ulam Theorem

As discussed earlier, it has been known that Fan’s general lemma with m-labellings [4] implies the Borsuk-
Ulam Theorem through Tucker’s lemma. Here we show that Fan’s N+1 Lemma is equivalent to the Borsuk-
Ulam theorem.

Theorem 1. Fan’s N+1 Lemma is equivalent to the Borsuk-Ulam Theorem.

Proof. We first show the Borsuk-Ulam Theorem implies Fan’s N+1 Lemma. Let T be a symmetric trian-
gulation of Σn with an anti-symmetric (n+ 1)-labelling L in which there are no complementary edges. Let
wi ∈ Rn+1 be the point with ith coordinate n and other coordinates −1:

wi = (−1, . . . ,−1, n,−1, . . .− 1).

Let W+ = {w1, ..., wn+1} and W− = {−w1, ...,−wn+1}. The set W = W+ ∪W− comprises 2n + 2 points
that lie on the n-dimensional hyperplane: H = {(x1, . . . , xn+1) :

∑n+1
i=1 xi = 0}.

Define a continuous map h : Σn → H as follows. For each v ∈ T , let

(2) h(v) =
{

wL(v) if L(v) is odd
−wL(v) if L(v) is even,

where w−i = −wi in case L(v) < 0. Extend h linearly to each simplex of T . Since L is an anti-symmetric
labelling, we see h(−x) = −h(x) for all x ∈ Σn. Therefore, by Borsuk-Ulam there is a z ∈ Σn such that
h(z) = 0.

Thus z is in some n-simplex σ such that h(σ) contains the origin. The images of the vertices of σ form a
set K = {h(v) : v ∈ σ, v ∈ T}, a subset of W of size n+1 or smaller (if there are repeated labels). Since there
are no complementary edges in T , the set K contains no pair {wj ,−wj}. Then K = {wj}j∈B ∪ {−wj}j∈B′

where B and B′ are disjoint subsets of {1, ..., n+ 1}.
Now consider the sum of vectors in K:

v =
∑
j∈B

wj −
∑
j∈B′

wj .

Note that the dot products wi ·wi = n(n+ 1) for all i ∈ [n+ 1], and wi ·wj = −(n+ 1) for all j 6= i. So, for
i ∈ B, the dot product

wi · v = n(n+ 1)− (|B| − 1)(n+ 1) + |B′|(n+ 1) = (n+ 1)(n+ 1− |B|+ |B′|),
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Figure 2. The action of G on Σn, as shown by their effect on Mr. Smiley.

which is positive unless |B| = n+ 1 and |B′| = 0, i.e., K = W+. And for i ∈ B′,
−wi · v = |B|(n+ 1) + n(n+ 1)− (|B′| − 1)(n+ 1) = (n+ 1)(|B| − |B′|+ n+ 1),

which is positive unless |B′| = n + 1 and |B| = 0, i.e., K = W−. Since the convex hull of K contains the
origin, it cannot be the case that all vectors in K have a positive dot product with v. So either K = W+ or
K = W− (and indeed, in these cases, K’s convex hull contains the origin).

If K = W+, then (2) shows the original simplex σ has labels {1,−2, . . . , (−1)nn + 1}. If K = W−, then
(2) and anti-symmetry of L shows that −σ has these labels. In either case we find a positive alternating
simplex, as desired.

Now we show Fan’s N+1 Lemma implies the Borsuk-Ulam Theorem. Let h : Σn → Rn be a continuous
function such that h(−x) = −h(x) for all x ∈ Σn. Assume, by way of contradiction, that there is no
point z ∈ Σn such that h(z) = 0. If h(x) = (x′1, . . . , x

′
n), let ĥ : Σn → Rn+1 be the function defined

by ĥ(x) = (x′1, . . . , x
′
n,−

∑n
i=1 x

′
i). So ĥ maps Σn to the hyperplane H and preserves continuity and anti-

symmetry. Furthermore, there is no point z such that ĥ(z) = 0.
Let T be a symmetric triangulation of Σn, and let the set W be as above. We wish to construct a labelling

L on the vertices of T that is anti-symmetric.
Define L(v) to be the index i such that wi is closest to ĥ(v) in Rn+1 for all i ∈ {±1, ...,±(n+ 1)}. In the

case of ties, choose the index with the smallest absolute value. This is well-defined because ĥ(v) is never 0,
and no non-zero point can be equidistant from wi and w−i = −wi. That L is anti-symmetric follows from
noting that ĥ is anti-symmetric, so ĥ(v) is closest to wi if and only if ĥ(−v) is closest to w−i.

Therefore, by Fan’s N+1 Lemma, there exists either a complementary edge (+i,−i), for some i, or an
alternating simplex with labels {1,−2, . . . , (−1)nn+ 1}. By taking finer and finer triangulations, and by the
compactness of the Σn, there exists a convergent subsequence of shrinking positive alternating simplices or a
convergent subsequence of shorter complementary edges involving the same index i. This gives a limit point
which, by the continuity of ĥ, is either equidistant from both wi and −wi, or is equidistant from all points
in {w1,−w2, w3, ..., (−1)nwn+1}. But the only point with this property is 0. Thus, the limit point z must
satisfy ĥ(z) = 0 and therefore, h(z) = 0.

�

4. Fan’s N+1 Lemma implies Sperner’s lemma

Now we establish how Fan’s N+1 Lemma will indeed prove Sperner’s Lemma by a direct construction, so
it is the “right” combinatorial result to sit in the Borsuk-Ulam triumvirate.

Theorem 2. Fan’s N+1 Lemma implies Sperner’s lemma.

Proof. Consider a triangulation S of ∆n with a Sperner-labelling `. We first extend S to a triangulation T of
Σn by reflecting copies of S to the other orthants of Σn. Let G = {±1}n+1 denote the group of symmetries of
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Σn generated by reflections that flip the sign of selected coordinates; then the action of g = (g1, ..., gn+1) ∈ G
on v = (v1, ..., vn+1) ∈ Σn produces gv = (g1v1, ..., gn+1vn+1) ∈ Σn. So g reflects v in all coordinates i for
which gi = −1. Note g = (1, 1, ..., 1) is the identity in G. The idea of this construction is illustrated in
Figure 2.

Similarly if σ is a simplex in S spanned by a set of vertices V , we define gσ to be the simplex spanned
by the vertices in gV = {gv : v ∈ V }. Let T be the collection of simplices {gσ : σ ∈ S and g ∈ G}. This
results in a triangulation of Σn since the reflection method ensures that simplices of T meet face-to-face
along reflected facets of S.

Now we extend the labelling ` on vertices of S to a labelling L on vertices of T by reflection but with
possible sign modifications. Define:

(3) L(gv) = g`(v) · (−1)`(v)+1 · `(v)

for each v ∈ S. Notice that L(gv) and `(v) have the same label value (but possibly different signs). When
g = (1, 1, ..., 1), this defines L on S and the factor (−1)`(v)+1 turns fully-labelled simplices into positive
alternating simplices. When g is non-trivial, L defines a labelling of vertices on reflected copies of S (see
Figure 3).

Figure 3. A positive alternating simplex σ in T arising from a fully-labelled simplex with
labels {1, 2, 3} in S, and reflected simplices gσ for g = (1, 1,−1), (1,−1, 1) and (1,−1,−1)
with their L-labellings indicated.

We might worry that L is not well-defined where orthants meet. However, orthants meet where gv = ĝv̂
for some g, ĝ ∈ G and some v, v̂ ∈ S. But then givi = ĝiv̂i for each i, which implies vi = v̂i since gi, ĝi = ±1.
Then gi = ĝi when vi 6= 0, i.e., when i ∈ Z(v). But `(v) ∈ Z(v) by (1), so that g`(v) = ĝ`(v). It follows from
(3) that L(gv) = L(ĝv), so L is well-defined.

Now we show that L satisfies the conditions of Fan’s N+1 Lemma. Antipodal labels sum to zero by
construction: the point antipodal to v is −v = ḡv, where ḡ = (−1,−1, . . . ,−1), so that (3) gives L(−v) =
−L(v). Also, we can show L has no complementary edges. Every edge in T is a reflected copy of some
edge in S via some g ∈ G, and the Sperner labelling ` of S has no complementary edges (all labels are
positive). Then the rule (3) shows that for any choice of g, two vertices v, w ∈ S will have identical `-labels
(`(v) = `(w)) if and only if their g-reflections have identical L-labels as well (L(gv) = L(gw)). So L has no
complementary edges, because ` did not.

Thus Fan’s N+1 Lemma applies so there exists a positive alternating n-simplex in T . Since ∆n is the
only facet of Σn that contains the labels {1,−2, 3, . . . , (−1)nn+ 1}, there must be a fully-labeled n-simplex
in S. �

In fact, as noted earlier, a stronger version of Fan’s N+1 Lemma holds whose conclusion is that there are
in fact an odd number of positive alternating n-simplices. Then the above argument would demonstrate the
stronger version of Sperner’s lemma that concludes there are an odd number of fully-labelled n-simplices in
S.



6 K. L. NYMAN AND F. E. SU

References

1. K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge Univ. Press, Cambridge,

1985.
2. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933) 177–190.
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