

Preface

What this book is intended for

This book is intended for a first course in Java programming. Java is
an object language. Programming in an object language is mostly
about writing classes, so class design and implementation is
presented from the beginning.

But, it takes three or four weeks for most people to internalize enough
expertise to understand classes, so the first several chapters (after the
introduction) are written in a quasi-tutorial style. The reader/student
is directed, repeatedly, to put down the book and go to the screen to
try out code. This is essential. Programming, like juggling, can’t be
learned without practice. It is a process skill and process skills must
be practiced.

To the student:

Welcome! Computing is changing our world. It is not easy to learn at
first, but once you start to understand it, it can be fun and
remunerative. Just remember: practice, practice, practice! And, don’t
be afraid to experiment -- that is how you learn.

To the teacher:

The way to teach from this book is to do the example programs just
before the students. That way, you will have them clearly in mind,
and will just have encountered some of the problems they will run
into. Carefully explaining bugs you had, how you diagnosed and
solved them, is invaluable to the students. Debugging is not easy;
they need a model.

There are some review problems and programming exercises at the
end of each chapter, but it is intended that the instructor will come
up with other programming problems that seem interesting.

If you have students who are not comfortable with files and
directories, they will need some extra help with those, they are not
covered here.

In closing:

This is a work in progress. There are necessarily numerous errors,
omissions, and sections in need of improvement. Feedback is
welcome at levenick@willamette.edu

Good luck!

jrl

CS231 Spring 5

Simply Java Table of contents

Chapter 1: Programming is like juggling 1

A. Computing as a fact of life 1
B. What is computing anyway? 1

i) Computing as information processing 1
ii) Computing as a revolution 4

C. The past: A (very) brief history of computing 6

i) Living in scaffolding - a cautionary tale 6
ii) Why are we still using this prototype? 7
iii) Evolution of computing 9

D. Juggling (!) 12

i) Learning to program 13
ii) The Approach used here: Less is more; more is less 14

E. Conclusion 15

Chapter 2: Programming: A quick dip in the pool 17

A. Introduction 17

i) Learning to program 17
ii) Problem Solving 18
iii) The two types of Java programs: Applications and Applets 20
i) A high level typology 21
ii) A template for every Java main method 22

B. Examples: 22

i) The first example of a class - A Robot Greeter 22
ii) The second example of a class - a personalized RobotGreeter 25
iii) Third example: A minimal Applet 32

C. Conclusion 33
D. End of chapter material 34

i) Problem Solving Techniques 34
ii) What could go wrong? 34
iii) New terms in this chapter 35
iv) Review questions 36
v) Exercises 36

Chapter 3: Class design and implementation 39

A. Introduction 39

i) A description of the task 39
ii) Before beginning to program: Design! 39

B. Building and testing the prototype GUI 41

i) Getting Started 42

Simply Java Table of contents

CS231 Spring 5

ii) Using the Button to alter the TextField 42
iii) Simulating one bank account by hand (without writing the Account class) 43

C. A generic problem solving technique 44
D. Account class: Design, implementation and testing 45

i) Account class design 45
ii) Converting the design to Java code 46
iii) Objects and classes 51

E. Creating and testing the finished GUI 52

i) GUI design 52
ii) GUI implementation 53

F. The Bank class: Design, implementation and testing 54

i) Bank class design 54
ii) Converting the design to Java code 55

G. Putting it all together - finally! 59
H. Conclusion 60
I. End of chapter material 61

i) What could go wrong? 61
i) New terms in this chapter 62
ii) Review questions 62
iii) Programming exercises 62

Chapter 4: Graphics and Inheritance 65

A. Introduction 65

i) A description of the task 65
ii) Creating a prototype 65
iii) Object Oriented Design -- choosing classes to implement 65

B. The Graphics class 66

i) The Graphics context 66
ii) Inheritance, Components and public void paint(java.awt.Graphics) 66
iii) Basics of graphics in Java 67

C. The Circle class -- design and implementation 70

i) Circle class design 70
ii) Converting the design to Java code 71
iii) Testing your code 72

D. Displaying a Circle graphically 73

i) public void paint(java.awt.Graphics) 73
ii) Testing the paint method 74
iii) More than one Circle 76

E. The Color class 77

i) Setting the color of the Graphics context 77

CS231 Spring 5

Simply Java Table of contents

ii) Built in Colors 78
iii) Creating your own Colors 78

F. The Eye class: design and implementation 79

i) Designing an Eye class 79
ii) class FilledCircle extends Circle 79
iii) Testing FilledCircle 83
iv) The Eye class 83

G. Assembling a working Eyes program 88
H. Conclusion 89
I. End of chapter material 89

i) New terms in this chapter 89
ii) Review questions 89
iii) Programming exercises 90

Chapter 5: Towards consistent classes 91

A. Introduction 91
B. Details I - Statements in Java: syntax and semantics 92

i) Syntax and Semantics 92
ii) BNF notation 92
iii) BNF, Java and adaptive systems 94
iv) The assignment statement 95
v) The message statement 96
vi) How to generate a Null Pointer Exception 96
vii) The return statement 97

C. The basics of classes 98

i) Variables I (state) 98
ii) Methods (control) 100

D. The ClassMaker tool 108

i) Motivation 108
ii) ClassMaker input and output 109

E. Constructors 111

i) Default constructors 111
ii) Account class including a constructor with parameters 112
iii) Eye/FilledCircle/Circle classes including a constructor with parameters -- and simplifi-

cations appertaining thereunto 113
iv) Special to Java -- what is this? 115

F. Details II 117

i) Types 117
ii) Expressions 120
iii) Variables II (varieties and scope) 126

Simply Java Table of contents

CS231 Spring 5

iv) Conventions 128

G. Recapitulation 129

i) Information 129
ii) Language Elements 129
iii) Process 130
iv) Information 130
v) Language Elements 131
vi) Process 132

H. Conclusion 133
I. End of chapter material 134

i) New terms in this chapter 134
ii) Review questions 134
iii) Programming exercises 135

Chapter 6: Software reuse 137

A. Introduction 137
B. Inheritance 137

i) The power of inheritance 137
ii) The Object class 138
iii) The mechanics of message sending 138
iv) This is super! 141

C. Composition 141
D. Composition Programming Example: Snowpeople 143

i) A description of the task 143
ii) Overall Design 143
iii) SnowPerson Design 144
iv) Implementation 145

E. Conclusion 154
F. End of chapter material 154

i) What could go wrong? 154
ii) Review questions 156
iii) Programming exercises 156

Chapter 7: Conditional statements 157

A. Introduction 157

iv) Procedural programming and control structure 157
v) Object programming allows you to substitute class structure 157

B. Different actions depending on conditions - Conditional execution 157

i) The if statement -- do something or don’t 157
ii) if-else -- do one thing or another 159

CS231 Spring 5

Simply Java Table of contents

iii) cascaded if-elses -- do one of a number of things 163
iv) The switch statement 167

C. Programming example: using the SingleScoreConverter class in a tennis
score keeping program 170

i) A description of the task 170
ii) Design 170
iii) Making it smaller; let’s just play a single game 175
iv) Testing 183

D. Conclusion 186
E. End of chapter material 186

i) Review questions 186
ii) Programming exercises 187

Chapter 8: Iterative statements and Strings 189

A. Introduction 189

i) Repetition 189
ii) On being conscious 189
iii) Imitation and culture, or monkey see, monkey do? 189
iv) This chapter 190

B. Iteration: Repeated action 190
C. The while loop 191

i) Syntax and semantics 191
ii) Examples 191

D. The for loop 198

i) Example 200
ii) The empty statement 205
iii) An infinite for loop 205

E. Strings: a very brief introduction 207

i) A few String methods 207
ii) Breaking lines using Strings 210

F. Conclusion 213
G. End of chapter material 213

i) New terms in this chapter 213
ii) Review questions 213
iii) Programming exercises 213

Chapter 9: Simulation and animation 215

A. Introduction 215
B. An introduction to Threads 215

Simply Java Table of contents

CS231 Spring 5

i) Simplest threaded animation 217

C. The programming task 220

i) Design 220
ii) Implementation 222

D. Recapitulation 236
E. Conclusion 237
F. End of chapter material 237

i) New terms in this chapter 237
ii) Review questions 237
iii) Programming exercises 237

Chapter 10: Reading and writing files 239

A. Introduction 239

i) File I/O 239
ii) The Model-View-Controller pattern 239
iii) On ignorance, stupidity, and utilities 239

B. The programming task 240
C. java.util.StringTokenizer 241

i) Isolating the I/O 241
ii) Simplest example 241
iii) Sample exam question 242
iv) The other StringTokenizer constructors 244

D. The MyReader class 246

i) Why MyReader? 246
ii) Echoing a user specified file 246
iii) MyReader internals 247
iv) Emitting the tokens one per line 251

E. Writing to a file 252
F. Putting it all together 254
G. Conclusion 255
H. End of chapter material 255

i) New terms in this chapter 255
ii) Review questions 255
iii) Programming exercises 255

Chapter 11: Data structures 257

A. Introduction 257
B. Arrays 257

i) Simplest examples 258

CS231 Spring 5

Simply Java Table of contents

ii) Printing a String backwards 261
iii) An array of Accounts 262

C. Vector and Iterator 263

i) add(Object) 263
ii) iterator() 263
iii) Simplest test program 264

D. A simple bank database 266

i) The database 266
ii) Inputting the database: load 266
iii) Outputting the database: save 270
iv) Enhancing the DBMS 272

E. Molecules in box 278

i) The programming task 278
ii) The Molecule class 278
iii) Changes to the Controller 288
iv) Experimenting with the program 291

F. Conclusion 291
G. End of chapter material 291

i) Review questions 291
ii) Programming exercises 292

Chapter 12: Writing a list class 295

A. Introduction 295
B. Designing a list class 295
C. Implementation using an array: MyArrayIntList 296

i) Managing a variable sized list in an array: representation 296
ii) Declarations and initialization 298
iii) Adding an element to the end of the list 299
iv) Adding an element at a particular location 300
v) toString() 301
vi) Deleting an element 301
vii) Replacing an element 302
viii) length 302
ix) Accessing an element 302
x) Making the list empty 303

D. Implementation using a Vector: MyVectorIntList 303

i) Declarations and initialization 304
ii) Adding an element to the end of the list 304
iii) Adding an element at a particular location 305
iv) toString() 305

Simply Java Table of contents

CS231 Spring 5

v) Deleting an element 306
vi) Replacing an element 306
vii) length 306
viii) Accessing an element 306
ix) Making the list empty 307

E. Testing 307
F. JavaDoc 309
G. Conclusion 310
H. End of chapter material 310

i) .Review questions 310
ii) Programming exercises 310

Chapter 13: Sorting lists 313

A. Introduction 313
B. Intuition for three sorts 313

i) Insertion sort 313
ii) Selection sort 314
iii) Bubble sort 314

C. Algorithm/Pseudocode 315

i) Insertion sort 315
ii) Selection sort 316
iii) Bubble sort 316

D. Implementation 317

i) Bubble sort implement ion 317
ii) Insertion sort implementation 320

E. End of chapter material 321

i) .Review questions 321
ii) Programming exercises 321

Chapter 14: Lightning review 323

A. Once over, quickly 323

i) Some facts 323
ii) Methods 323
iii) Variables 324
iv) Inheritance 324
v) Creating objects (instances) 325

B. Examples 326
C. The process of programming 326

i) Specifying the problem 326
ii) Design 326

CS231 Spring 5

Simply Java Table of contents

iii) Implementation 326
iv) Testing 326
v) Debugging 326

 Netbeans 3.6 Appendix 327

Simply Java Table of contents

CS231 Spring 5

NetbeansAppendix A: Getting started with Netbeans and the greetings program
327

NetbeansAppendix B: Creating the simplest Applet in Netbeans 329

NetbeansAppendix C: Creating a GUI Applet 331

NetbeansAppendix D: Adding, connecting and testing a Button 331

NetbeansAppendix E: Creating a GUI Application 334

NetbeansAppendix F: Adding a pop-up Frame 336

NetbeansAppendix G: Adding, connecting and testing a TextField 337

NetbeansAppendix H: Adding a TextArea 337

NetbeansAppendix I: Adding and using a Choice 338

NetbeansAppendix J: Changing the label on a Button 338

NetbeansAppendix K: Renaming Components 339

NetbeansAppendix L: Creating a class 339

NetbeansAppendix M: Creating a class with a test driver 340

NetbeansAppendix N: Changing the size of an Applet 341

NetbeansAppendix O: Using the Color Editor 341

NetbeansAppendix P: Catching mouse clicks 342

NetbeansAppendix Q: Adding JavaDoc comments. 343

Idioms (for elsewhere) 345
Documentation 346
Access modifiers 347

CS231 Spring 5

Simply Java Table of contents

i) public 347
ii) protected 347
iii) private 347
iv) friendly 347

More Strings 348
Errors 349

i) Compile-time errors 349
ii) Run-time errors 349
iii) Intent errors 349

Exceptions 350
repaint(), paint() and update() 351

i) public void update(Graphics) 351
ii) public void paint(Graphics) 351
iii) repaint() 351
iv) paint(Graphics) or repaint()? 352

More stuff... 353

Simply Java Table of contents

CS231 Spring 5

CS231 Spring 5 Page 1

Chapter 1: Programming is like juggling

A. Computing as a fact of life

This millennium is an exciting time to be involved in computing. The web, which did not
exist 20 years ago (!), is an important new part of our society, our culture. Ordinary
people, with no training in computing, can sit at a personal computer and access millions
of other computers across the planet. Anyone with patience and the ability to follow
simple instructions can make a web page and post information that is immediately
accessible from around the world. This is a revolutionary development. Java is a
programming language designed for programming on the web.

B. What is computing anyway?

i) Computing as information processing

Computing is information processing. Always. Only. Although many people experience
computing as web browsing, or chatting, or game playing, the underlying programs are
always processing information by executing instructions.

A program is a series of instructions that is executed by the processor. Each instruction
does some small task like moving a little information from one place to another, or
adding one number to another and storing the result, or comparing one number to another
and taking different actions depending on which is bigger. Although each individual
action is small, a modern processor executes billions of instructions a second and so can
accomplish a fair amount in a short time.

Information is stored mainly in two places, temporarily in memory and permanently in
files on disk. A file is a series of numbers. This is the same "file" you might store from a
word processor or an email program. When you save a file in a word processor, the
information in your document (i.e. the text you have typed, along with the formatting
information) is converted to a series of numbers and written on the disk along with the
name of the file that you select. Later, when you load that file again, the numbers are
converted back into text to be displayed. The files you save (and the information in the
files) remain on the disk indefinitely unless you delete them.

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 2

Information in memory, by contrast, lasts only so long as the machine is turned on and
the program that is using that memory is running. When the program terminates that
memory may be used for other processes. When the machine is turned off, all the
information in memory is lost.

a) State and its representation

In an ordinary digital computer, memory is measured in bytes. It is common, in 2004, for

machines to have a gigabyte of memory; that means 2

30

 bytes. Each byte is composed of
8 bits, and is just enough memory to hold a single letter. As you have likely heard, all
information in a digital computer is ones and zeros; since there are 2 possible values it is
called binary. A single

bi

nary dig

it

 is called a bit. Memory is a long sequence of
numbered locations, each of which can hold one byte. The good news is, programming in
Java, you will almost never need to deal with bits, bytes or memory locations.

You will, though, need to understand that information in your program is stored in
variables, which are associated with particular locations in memory, and that a particular
variable may take on different values at different times. The current value of a variable is
referred to as its "state". This is an ordinary usage of the word state, but perhaps not a
common one. If it seems confusing, you might think of the "state of a light bulb" (i.e.
either on or off), or the "State of the Union".

b) Definition of algorithm

A program is an algorithm written in a particular programming language. That’s fine, but
what’s an algorithm?

Rough Definition: An algorithm is a step-by-step description of a process to solve a
problem.

Thus a recipe is, roughly, an algorithm. It lists the various ingredients that should be
added in what order, and the cooking or baking process. Most recipes are not quite
algorithms because they require judgment to carry out correctly.

Better definition: An algorithm is a step-by-step description of a process, where each step
is described explicitly and requires no judgment, to solve a problem, or a class of
problems.

CS231 Spring 5 Page 3

Simply Java Chapter 1: Programming is like juggling

The reason many recipes do not fit this definition is that they include directions like,
"Bake until done", or "Cook until just tender.". While any experienced cook understands
these instructions, the cook must exercise judgment to follow them. People do this very
well, but computers do not.

So, when presented with a problem to be solved by a program, a programmer’s job is first
to formulate an algorithm which will solve that problem, and then to convert it into a
programming language, so that it can be executed (i.e. carried out) by a computer.

c) Action! The only three statements that do anything

The remainder of this book concerns techniques that allow you to solve problems and
implement algorithms in Java. There will be several hundred pages explaining control
structure, class structure, objects, expressions, methods and data structures. Oddly, in
spite of all that, there are only three actions that actually accomplish anything. Input
statements and assignment statements change the state (or value) of variables; and output
statements send information out of the program (usually for a human to read). That’s it,
three things. Input, assignment, output.

1. Input statement - bring information into the program
2. Assignment statement - change the information in (state of) a variable
3. Output statement - send information out of the program

Everything else in a program, all the hours that a programmer spends designing and
coding and debugging, only arranges for those three things to happen the right number of
times and in the right order. This may seem strange, but it is true.

d) Structure: everything else

The parts of a program besides input, assignment and output may be divided into three
categories:

1. Control structure - selects which statements are executed, in what order,
and how many times

2. Data structures - organize data (information) so that it is more convenient
to access

3. Class structure - organizes classes so that they are easier to understand,
modify and work with.

These three will be the subject of much of the rest of this text.

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 4

ii) Computing as a revolution
Computing, viewed from the inside, is always about information; inputting information,
processing information and outputting information. Viewed from the outside, it is an
exciting and revolutionary development. It is transforming our world, our ways of
communicating, learning, playing, and our understanding of ourselves. The changes
computing will bring are mostly in the future; I am fond of saying, "The computing
revolution has not properly started yet.".

a) The web as a new cultural phenomenon
Some people think of "culture" as meaning opera or art galleries. There is a broader
meaning that includes language, education, technology and even dating. Many everyday
activities are being transformed by the web. How we shop; how we communicate with
our friends, family, and co-workers; how our cars and televisions work; how we plan and
spend our time; these and more are done differently if we have an internet connection
nearby.

b) People have never had a tool for processing information before

We are only just beginning to learn how to use computing. Nothing is settled yet. The
leading hardware and software producers come out with updates monthly. But the way
we deal with information has been changed forever. A good example is Google. It sends
bots out to collect information in the dead of night (i.e. when the net is not so busy), then
catalogs and indexes it so when people type in queries it can respond quickly and direct
them to relevant web sites. If you’re used to Google this may seem like no big deal. But it
is. Search engines and the web allow information to be disseminated orders of magnitude
faster. Even research scientists use search engines instead of spending long hours in
libraries searching for paper copies of research articles. What will this mean for our
culture? Who can say? But, it will certainly change it.

c) Automated reasoning and process

Computing also allows us to study process. A program is a mechanization of information
processing. Before computers, information processing was only done by people (and
other natural systems). We have learned some little about process thus far, but who
knows what the future will bring?

d) Artificial Intelligence?

Artificial intelligence is an exciting and alarming possibility. Might we all be replaced by
intelligent machines? There have been many projects starting in the 1950’s to build

CS231 Spring 5 Page 5

Simply Java Chapter 1: Programming is like juggling

programs to do language understanding, automatic translation, scene analysis, and more
recently build autonomous vehicles. Thus far, successes have been extremely limited. So,
although computers are everywhere, blindingly fast, and never forget; to call them stupid
would be a compliment; they have no intelligence. Nevertheless, clever programmers can
make them do some amazing things.

One reason artificial intelligence is so difficult is that while computers can add numbers
millions of times a second, and store and access millions of facts or rules without ever
forgetting even one, they do not learn as people do, they do not form and apply concepts
flexibly. People are the product of billions of years of evolution and we have highly
developed and highly specialized information processing capacities. Additionally, people
are born with a set of unconscious patterns corresponding to important relationships and
ways of thinking. Important how? Evolutionarily. Certain ways of processing information
are more adaptive than others, and individuals must have survived long enough and done
the right things to have and raise children, or they are not our ancestors. Our fascination
with sex and violence is not accidental. Neither is our love for children. Our abilities to
communicate with metaphors, to ascribe meaning, and to discern pattern in noise are
beyond the reach of any computer yet programmed.

The enterprise of attempting to create intelligence in a digital computer has been likened
to trying to climb a tree to the moon. Early, preliminary attempts seem to yield good
progress ("Look! See how high I’ve climbed already?"), but sooner or later frustrating
impasses always seem to loom ("Huh, the branches are getting pretty skinny up here."),
and eventually the project is abandoned ("But... maybe if I found a tree on a very high
hill?"). There’s no way to know how apt that metaphor is (and that’s always a question
you should ask when encountering a metaphor, otherwise you risk being led badly
astray!). Everyone knows you cannot climb a tree to the moon, whereas whether a digital
computer could have intelligence remains to be seen.

e) Societal impacts

Our culture is changing in many ways because of computing, here are just three
examples.

1) Around the middle of the second millennium kingdoms arose in Europe. In the days
before computing, to raise an army to make war on your neighbor, or defend yourself
from them, required first assembling a bureaucracy. A small army of clerks and
functionaries was needed to coordinate the calling up, feeding, housing and supplying of
any army. This meant that to wage war a ruler had to enlist or compel the cooperation of

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 6

many many civilians. Nowadays, one person with a thousand dollar machine plus access
to appropriate databases and software could coordinate much of that without assistance.
Will this change warfare? Has it already? Look around. Watch and see.

2) Many Americans put a premium on their privacy. They hate the idea of anyone
compiling and/or selling data about them without their permission and cherish the notion
of relative anonymity in transactions on the web. But the nature of computing and the
web means that privacy is essentially an illusion. If you send email across the country
there are copies of it on at least several mail servers; worse, there are logs. Admittedly,
only system administrators can access them, but if there were a reason to, they could.

Uninformed people may imagine that you can do things anonymously on the web. It is
true that your personal identity is hidden, but where you are sitting and your ISP are
definitely not a secret. If they were, there would be no way for the web page you are
receiving information from to send it to you. Even though you can’t see them, there are
servers and routers relaying the packets across the planet to your screen; and they are all
logging all the transactions, just in case someone needs to find out who was accessing
what.

 3) Some people predict a collapse of traditional brick and mortar commerce. As more
and more goods are sold over the web, there is less and less need for physical stores. Of
course there will always be stores, but perhaps soon there will be considerably less of
them.

C. The past: A (very) brief history of computing
Although it is not strictly necessary to know the history of computing before learning to
program, there are some interesting perspectives one may develop by doing so.
Therefore, I offer this brief history.

i) Living in scaffolding - a cautionary tale
A cathedral took many years to build. Imagine building a gigantic stone structure without
power tools. Huge blocks of stone, high walls of stone. To place a block of stone on a
wall, you must first lift it up and then set it in place, making sure that it fits tightly. This
requires solid, strong, more or less permanent scaffolding.

It was common for the workers to construct living quarters in the lower levels of the
scaffolding (alongside the already completed walls). Likely because this was a

CS231 Spring 5 Page 7

Simply Java Chapter 1: Programming is like juggling

convenient and easy place to build a shelter to cook for the workers and for the workers
to eat during inclement weather. As years turned into decades and the walls (and the
vacated scaffolding next to them) grew higher, it was simply easier for the families of the
workers to take up residence there. As decades turned to centuries, and construction was
interrupted by wars or plagues, people were born, grew, raised children and died, living
in the scaffolding, knowing no other life. There were even cases where the original
project was abandoned and the workers settled into the scaffolding as a permanent
residence.

There is a danger, in any endeavor, that temporary measures, adopted as a means to an
end, remain in effect for so long that practitioners no longer remember that they were not
the goal of the project. This is not, generally, a good situation. Digital computers are a
case in point.

ii) Why are we still using this prototype?
This text will emphasize generic problem solving principles, in addition to Java
programming. They will be used in service of programming, but will typically be
applicable to many other areas. I use the phrase "problem solving" in a special sense here.
It is the activity that one engages in when one is trying to accomplish something and runs
into a problem that stops them. These problem solving principles are for when you don’t
know how to cope with a problem. Here’s the first (and perhaps the most general).

a) Problem Solving Principle #1 - Build a prototype
When attempting to solve a difficult problem, first build a prototype that solves a similar
problem that is simpler or smaller. This is useful for several reasons. If you’re stuck on a
problem, sometimes a smaller or simpler version of the same problem will be easy. Plus,
sometimes the reason a problem stops you is that you’ve never thought carefully about
anything like it. The cognitive structure you generate by solving the simpler version
sometimes allows you to see through the more complex problem.

Here’s a problem that will perhaps stop you. Assume there are 32 people in a classroom.
Each person is asked whether or not they have ever been snowboarding. They each come
to the desk at the front of the room, and write their answer on a piece of paper on the
desk; the first on the first line, the second on the second line, and etc. How many possible
different sequences of yeses and nos are there?

Perhaps you’ve been studying combinatorics and know the answer right away. If not, read
on. What’s the smallest we could make the problem? How many people? Right, one. One

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 8

person can write one of two things; yes or no -- so there are two possible sequences (if
you can call one thing a sequence). The good thing about solving a problem with one
thing instead of n things is that it is usually trivial. The bad thing is that it may not tell
you much.

So, try two people. The first can write either yes or no. Then the second can write either
yes or no. If the first person writes yes, the possible pairs are {yes, yes} and {yes, no}. If
the first person writes no, they are {no, yes} and {no, no}. So four total.

The trick, now, is to generalize to n people, or in this case 32. For one person the answer
was two for two people it was four; can you discern the pattern? Commit to a pattern.
Then see if it is true for three people. Here’s how I do the analysis for three.

As we just saw, for the first two people there were four possible states of the list:
{yes, yes}
{yes, no}
{no, yes}
{no, no}
The third person can either add yes or no, giving these possibilities (the third person’s
answer is in bold):
{yes, yes, yes}
{yes, yes, no}
{yes, no, yes}
{yes, no, no}
{no, yes, yes}
{no, yes, no}
{no, no, yes}
{no, no, no}
Twice as many possibilities as with 2 people. So the number of possible states is not
twice the number of people, but rather, it starts at 2 and doubles with each additional yes
or no added to the list. Thus, you can see the answer with 32 people is, 2*2*2*2...*2, 32

times, which is written 232 (that’s somewhat more than 4 billion). Remember this number,

232, and how it was derived; you will meet it again later.

b) Von Neumann's prototype

The second example of building a prototype of a system involves the inventor of the first
digital computer, John Von Neumann. In the 1930s Von Neumann set out to build a
thinking machine. Since the only things we know of that think are brains, he decided to

CS231 Spring 5 Page 9

Simply Java Chapter 1: Programming is like juggling

model a brain (an eminently reasonable idea!). He was under the impression that brains
were analog devices, made up of neurons that were more or less active depending on their
inputs. Remember, in those days there were no transistors, so he was working with
vacuum tubes, which are pretty good analog devices. He decided his computing machine
would have a number of elements with values that ranged between 0 and 1, where 0
represents all the way off, 1 all the way on, 0.5 half way on, 0.75 three quarters on, and
etc. He started trying to settle on the details of this thinking machine, and found himself
stuck on how exactly to implement it. So, he decided to build a similar, but simpler
machine; namely one with only two states, 0 and 1; a binary computer.

It turned out that even this simpler machine was not trivial to implement, but with time
and persistence they got it to work. Von Neumann died before he ever built the real
thinking machine, and here we are living in the scaffolding. Perhaps Von Neumann was
right; perhaps mechanical intelligence will require analog computers. We shall see.

iii) Evolution of computing
The rate of evolution in computing is astounding. Digital computing is changing so
rapidly for a number of reasons: a) it is new, b) hardware is improving rapidly,
c) software is improving rapidly, d) more and more people are getting involved, both as
users and programmers. Any human endeavor, at its inception evolves rapidly. Early,
simple, clumsy, poorly conceived systems give way to more sophisticated, better
debugged, easier to use systems.

a) Hardware
In the 60 years that computing has existed, computers have been utterly transformed.
Early computers were made with vacuum tubes, like very old radios and televisions. The
invention of the transistor allowed a truly digital device. The first transistors were hand-
made and large. They were mounted on circuit boards and wired together. Soon hundreds
of tiny transistors were being packaged on a chip; these were called integrated circuits
(ICs) and were mounted on similar boards. For example, in a 1960’s computer the central
processing unit (CPU), or processor, which does the arithmetic and logic, was a board
perhaps 18" square, packed with chips on one side and festooned with more wires than
you’d want to count on the other. Before long tens of thousands of transistors were being
packed into a chip, a technique, then called very large scale integration (VLSI). One day,
someone managed to pack all the functionality for a CPU onto one chip, and the age of
the microprocessor began.

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 10

A microprocessor can run much faster than any processor spread out on a board for one
simple reason; the information in the processor has a shorter distance to travel. Several
facts will help illuminate this. Electrical signals travel at about 0.6c; where c is the speed
of light. Modern processors commonly have clock speeds of 4gHz or more. A clock
speed of 1gHZ means the clock ticks a billion times a second, the time from one tick to
another is a billionth of a second, a nanosecond. Light travels about a foot in a
nanosecond. So, if components of the CPU were a foot apart, there is no way a signal
could get from one to the other in time for the next clock cycle. That would slow down
the processor. Thus, every modern processor is a microprocessor and every modern
computer a microcomputer.

b) Education, language and culture

In spite of that, there are books and people who still talk about "mainframes". Some out
of date (but still in publication) books include typologies of computers including:
mainframes, mid-sized computers, mini-computers and microcomputers, as if it is a
spectrum from large and powerful to small and not, when the reverse is typically true.
Why is this?

This is a characteristic of the slow evolution of culture and language. Language in a
rapidly changing culture lags behind the phenomena it describes. An example is "floppy
disks" as the name of 3 1/2 inch removable disks. They replaced the 5 1/4 inch removable
disks, which were actually flexible (i.e. floppy). Another computing example is RAM.
This is the acronym for random access memory, the main memory in computers. It was
called "random access" because it supplanted tape memory which was strictly "serial
access". If the information you needed was on the other end of the tape, you had to wait
for it to rewind; this is why computers in old movies had so many whirling tape drives. In
time, the language (and movies) will catch up; assuming computing stops changing so
quickly!

c) Software: programming the hardware

As hardware has evolved, so has software. Software is the programs that control the
hardware. It is pure information, the stuff of dreams, and seemingly as difficult to control.

The first computers were programmed by physically connecting and reconnecting wires
to the components. The reason was that there was no memory to store the programs.
Once memory was invented (tape and then RAM), programs were written in binary, in
machine language that the processor could execute directly. Each tiny instruction for the
processor was laboriously entered by setting toggle switches. Even the simplest programs

CS231 Spring 5 Page 11

Simply Java Chapter 1: Programming is like juggling

were very long and tedious to debug; there were no screens or keyboards. Next, card
punches and card readers made it possible to type programs, store them on cards, and
feed them in.

Programming in machine code is a big headache and unbelievably slow. Before long,
some enterprising systems programmer wrote a symbolic assembler that eliminated some
of the mind-numbing tedium (computers are excellent for mindless, repetitive tasks!).
Assume the add instruction, in machine code, were 2; then to add the number at location
143 you might write: 2143. An assembler allows the programmer to move a little away
from machine code, and write "add 143" instead. (By the way, 2, 3, and 4 are not binary
digits; the actual binary instruction would have looked more like 0010000101000011.)

Assembly coding is not much fun, and is ridiculously inefficient. Once programmers had
good assemblers, they realized they could write compilers. Compilers input some higher
level language (like Fortran, or C) and output assembly code. The assembly code then
goes into the assembler which emits machine code.

Fortran and C were great advances over assembly code, but before long more powerful
languages were invented. There are functional languages, database languages, logic
languages and object languages (among others). C++ was an early object language based
on C. Java is a later language based on C++; it was designed for programming on the web
and eliminates some of the worst shortcomings of C++. There will be many other new
languages as time goes on. Perhaps you will design one.

d) Why it's not quite that simple

Perhaps you noticed that the distinction between hardware and software was not quite as
clean as it might be. Hardware is stuff you can hold in your hand. Software is
information. Plugging and unplugging wires was the first example of software, and wires
are definitely physical; their arrangement is logical, but still...

People like to create simple categories. Hardware/software. Us/them. Nature/nurture. But
things are often not quite so simple. A hundred years ago a debate raged over how much
of what animals (including people) do is determined by genetics and how much by
experience. The blank slate faction said it was all experience; the instinct school claimed
it was mostly built in; some cooler heads argued it was about 50-50. Now most everyone
knows that a better answer is 100-100 -- what we become is determined by our genetic
heritage and our experiences. To neglect either would be a mistake.

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 12

Another common and natural false dichotomy is to divide the world into us and them.
There are people who blame "them" for whatever goes wrong. "Them" could be teachers
or students, government or citizens, parents or children, our race or theirs, our country or
theirs, our religion or theirs. If people are not paying attention they seem to do this
automatically; there’s reason to think it might be an innate proclivity. But we can learn
not to.

The hardware/software dichotomy is also murky. It is possible to bake programs into
silicon; there are hardware Java chips. Processors have microcode inside that governs
their function. It is even possible to build virtual machines; software simulations of
hardware. Perhaps the most revolutionary aspect of Java is the Java Virtual Machine.
This requires a bit of explanation.

e) The Java Virtual Machine

Different computers have different processors. For a program to run on a particular
machine, it must first be translated into the machine code of the processor on that
machine. Thus, if you have a program that must run on a dozen different CPUs, it must
first be translated into a dozen different "binary" files. When a new CPU is invented, the
program must be retranslated for that CPU. If you hope to distribute a program across the
web, this is a major headache.

This problem is solved in Java by the introduction of an intermediate form, byte-code.
Byte code is a machine independent form which runs on the java virtual machine. The
Java virtual machine (VM) for a particular machine knows how to interpret byte code and
execute instructions on that machine to accomplish what the programmer intended. A
Java program is compiled into byte-code and distributed. It can then be run on any
machine that has a Java VM installed. The VM must still be written for every type of
processor, but it’s a huge improvement to only distribute one program instead of every
program.

D. Juggling (!)
I juggle on the first day of my introductory programming courses. I explain that
programming is like juggling, you can’t learn to do it by watching. It’s not quite the same,
but you can watch me juggle if you go to:
www.willamette.edu/~levenick/juggle/juggle.avi.

CS231 Spring 5 Page 13

Simply Java Chapter 1: Programming is like juggling

I’ve been juggling for many years and can easily keep three balls in the air for long
periods of time without dropping them. I already know how, so it’s easy. If you’re just
trying juggling for the first time, you will drop the balls often. If, each time you miss one,
you curse yourself, or the ball, or whoever distracted you, and think to yourself, "I’m just
no good at juggling!", you are not helping yourself learn. The appropriate response is,
"Oops! Missed!"; then pick up the balls and keep practicing.

Programming is similar in that almost every program has mistakes initially; these are
called "bugs". Only novice programmers imagine that any nontrivial program will be
right the first time. Experienced programmers make fewer mistakes than neophytes, but,
like learning to juggle, when you run into bugs, if you get angry or imagine it reflects on
you personally it doesn’t help. It’s normal to have bugs, especially initially.

i) Learning to program
Programming is also rather like writing in many respects. They both are creative, iterative
processes without any one correct way. They both have syntax (grammar) and semantics
(meaning), and grammatical errors can obscure the meaning in either. Of course, no one
reads programs for pleasure; on the other hand, novels do not deliver email or control
automated factories.

There are many different ways to teach Java programming. Some books still start by
teaching the old C constructs, and only introduce classes after 6 or 10 weeks. Modern
approaches introduce classes earlier. This text begins with classes and adds a cognitive
component. A programming environment always includes a programmer; teachers and
students of programming ignore the characteristics of programmers, and in particular,
novice programmers, at their peril. Good software development methodology minimizes
cognitive overhead, and thus leaves the programmer, at whatever level of expertise, with
enough cognitive capacity to solve the problems that will inevitably arise -- this is
especially important for beginners.

Learning to program is not easy. The first several weeks, before you can do even the
simplest things, can be especially frustrating. Fortunately, after five or six weeks, when
you have mastered the basics of input, output, classes, and calculation, the ability to make
a machine do what you want it to balances out the initial difficulty of doing so.

One of the reasons programming is difficult initially is that there are so many details one
must learn before one can construct even the simplest program. There are a number of
facts and concepts (a few dozen) that one must grasp before programming begins to make

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 14

sense -- unfortunately, they are all inter-related, and understanding (or explaining) one,
requires understanding (or explaining) all the rest. So, at first, the whole enterprise can
seem hopelessly confusing and even daunting. But, with patience, persistence and
practice you can surmount this obstacle; and once you learn to program it can be very
rewarding and remunerative. If, given these cautions, you wish to continue, read on!

ii) The Approach used here: Less is more; more is less
Computing is different from other fields. First, it is brand new. Mathematics, rhetoric,
psychology, physics and philosophy are thousands of years old. The first digital computer
(which was as big as a house and less powerful than a modern day low end calculator)
was developed in the 1940’s. Java, the language this book teaches, was released in 1995
(by Sun Microsystems). It extends the old C++ language which extended the older C
language from the 1970’s. Computing is evolving at an unheard of pace. Better hardware
makes possible better software; better software allows programmers to build even better
software; as programmers mature who have been educated in the new paradigms, they
can invent even better paradigms. The synergy between faster, cheaper hardware, better
programming tools, and better educated programmers will result in a transformation of
our lives. And you can quote me.

Second, because computing is so new there is no consensus on how to teach it. In
biology, or mathematics, or any of the established disciplines, introductory courses have
been taught to millions of students over the past hundred years or so. As a result, these
disciplines have well entrenched examples and excellent textbooks, tested on class after
class after class. Some Java textbooks, by contrast, are rewritings of C++ textbooks.
Others are a hodgepodge of hints and techniques. It’s not that computer scientists don’t
know how to write, it’s more that there hasn’t been time, and it’s not yet clear how to help
people learn to program well in Java.

This text takes a different approach, the less is more and more is less approach. Less is
more, in that there are many extraneous details of Java that are best avoided in the
beginning, so that the student may focus on what really matters. On the other hand, it is
imperative that students begin by learning to write classes, even though this is difficult
until they grasp a certain set of the basics. So even though it is not easy to learn to write
classes, that’s where we will start; this seems like more, but in fact, after a few chapters it
will result in there being much less to learn later. Let’s get to it!

CS231 Spring 5 Page 15

Simply Java Chapter 1: Programming is like juggling

E. Conclusion
This brief (and somewhat opinionated) introduction to programming, computing, culture
and human nature has introduced many of the themes that will run through this text. With
any luck it has whetted your appetite for an introduction to Java programming which
follows immediately.

Simply Java Chapter 1: Programming is like juggling

CS231 Spring 5 Page 16

CS231 Spring 5 Page 17

Simply Java Chapter 2: Programming: A quick dip in the pool

Chapter 2: Programming: A quick dip in the pool

A. Introduction

This chapter introduces the structure of Java programs through several examples. It also
presents an important problem solving technique, namely learning to define problems in
such a way that you can come to grips with their essentials instead of becoming
hopelessly mired with inessential issues. In this spirit the examples are presented without
complete explanations of the intricacies of every component; a thorough presentation will
be deferred until Chapter 5. This is done for two reasons. First, it is more interesting to
write programs and see them work than to memorize long lists of details. Second, it is
much easier to understand the details of a programming language after you have had
some experience working with it.

i) Learning to program
Once, a travelling saleswoman was driving down a country road and spied a pair of
coveralled legs protruding, unmoving from under a gigantic combine. Concerned for the
well-being of this prostrate farmer, she stopped her car, hopped the fence, walked up to
him, and asked, "Are you okay?". "Yep, just trying to fix this combine.", he replied. The
saleswoman studied the bewildering complexity of gears, levers, hydraulics and wires for
a moment, then asked, "How did you learn to fix such a complicated thing?". "Don’t
know a thing about fixing ’em.", he replied. "Then how on earth do you expect to be able
to fix it?". "Well...", drawled the farmer, "...I figure a person made it.".

A programming environment is a little like that combine. It is composed of many
interacting parts and at first it certainly looks like you might never figure it out.
Surprisingly, programming is easy. The computer always does exactly what you tell it to.
Programming is also fun, once you get the hang of it. Learning to program may seem a
daunting task. To the uninitiated, the complexity may appear overwhelming,
incomprehensible. Many interacting parts must be in the proper relationship before even
the simplest program will work.

Like that combine, the Java language is large and complex, but, again like the combine, it
is very useful once you know how to use it. The old C programming language evolved
into the object based language C++ and then into Java. As a result, Java has some
complicated syntax. If a novice programmer were required to understand everything in a
first program, it might take weeks or months before that program could be written. But,
this book uses a spiral approach. First the essentials of Java are introduced by way of

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 18

examples. Those concepts will then be revisited in more detail in Chapter 5; this will
provide the understanding to accomplish many programming projects.

Learning to program in Java, like fixing a combine, is possible. Learning to control the
information processing machine we call a computer is initially a lot of work, but after
surmounting that initial obstacle it can also be exciting and rewarding.

ii) Problem Solving
"There are only two kinds of proofs in mathematics - trivial proofs and
impossible proofs. The difference is that the trivial ones you already
understand." Freshman Calculus Prof.

The author of this text is an experienced programmer. He has written large, complex
software in numerous programming languages. But, when he first uses a new
programming language he writes a tiny program that displays the single word,
"greetings", on the screen. Why is this? The answer is simple, but difficult for some to
learn. Do you know (without looking ahead) what it is? If you do, you already know one
of the most important lessons of problem solving.

a) Definition of problem solving
Life is full of problems. You are already an expert problem solver, otherwise you would
not be where you are now, and you would not be reading this book. Problem solving (as
used in this context) is different from ordinary functioning or coping. Every day you find
your way home to sleep. Sometimes your car breaks, or your bike is stolen, or you’ve
sprained your ankle, or there is a traffic jam, or road construction, or a train blocks the
way. You deal with those problems and get home anyway, but that’s mostly just coping.
Problem solving is what you do when you are stuck; when you’re stopped and don’t know
what to do next. That’s never a pleasant position to find yourself in, but if you develop
your problem solving skills, it is a lot more comfortable (and less common!).

b) Details

Here’s a fact that a novice programmer might not know: When you first learn to program
you get stuck frequently. Why? Because programming requires familiarity with a large
number of details. Worse, when you are starting out, since you don’t really understand
what you are doing, that mass of details doesn’t really mean anything, so there’s no way
to remember them all. Later, as you become familiar with the process, and develop good
programming habits, you’ll deal with many of those details automatically without having

CS231 Spring 5 Page 19

Simply Java Chapter 2: Programming: A quick dip in the pool

to think about them. But initially, even though the individual details are small and not
especially interesting, every one of them must be correct for your program to work.

It’s a little like when you move to a new city. At first you only know where a few places
are, and getting anywhere is a mystery and takes concentration. Then you learn a few
places and routes, but anytime you get off them, you are lost. In time, it becomes familiar
and you don’t even have to think about how to get places. But at first it’s all new and
confusing. Programming too. But it does improve.

c) Bugs

Errors that occur when a program runs are called bugs. There’s a story that one early
computer didn’t work for days until someone discovered a dead moth between a contact.
The story may be apocryphal, but the term is here to stay. An accomplished programmer
has much experience solving the problems that arise in the course of programming. In
other words, part of learning to program is learning to deal with bugs; both finding and
fixing them (and the former is sometimes harder than the latter!).

d) A tool kit for solving problems

This text will include a number of problem solving techniques. Some of these will be
specific to programing in Java, but the majority will be more generic. Think of these
techniques as tools. If you learn these techniques, then when you confront problems, both
programming and otherwise, you may feel better prepared. As if you’ve acquired a
toolbox of useful problem solving methods. Instead of discovering yourself stuck and
feeling like you don’t know what to do, you may find yourself saying, "Huh! Stuck!", and
then immediately start to consider which of the various techniques in your toolbox is
most likely to be helpful.

e) A problem solving exercise

Almost everyone has been exposed to the Pythagorean Theorem: in a right triangle, the
square of the hypotenuse is equal to the sum of the squares of the other two sides.
Consider the following diagram as a circle centered at the origin, together with a
rectangle inscribed in the upper right quadrant. The radius of the circle is r. The height of
the rectangle is y. The question is, what is h? If you knew the width of the rectangle you
could use the Pythagorean Theorem, but all you know is the radius, r. Try to figure out h;
but don’t spend more than a few minutes on it. The answer is later on in the chapter.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 20

iii) The two types of Java programs: Applications and Applets
Java programs are either Applets or Applications. Each type of program has unique
capabilities.

a) Applets
Applets are programs that can run in web browsers. They are commonly used to add
functionality to web pages. When you use the web, if you pay attention, you will
sometimes see the message "Starting Java" in the lower left corner of the screen. It is very
convenient to be able to execute Java Applets from web pages; indeed, Applets were
designed for this purpose. But, there is a problem. When you go to someone’s page and
an Applet starts running, it is running on your machine. If there were no safeguards, this
program, that you might not even know is running, could be damaging your computing
system, or stealing all the information from your disk. To avoid this possibility (and thus
to convince people to allow Applets to start up in browsers at all!) Java has a Security

CS231 Spring 5 Page 21

Simply Java Chapter 2: Programming: A quick dip in the pool

Manager, that limits what Applets are allowed to do. The most important things that
Applets cannot do are reading and writing files on your local computer, and opening
sockets to communicate with other machines.

b) Applications

Applications run independently; they do not depend on a browser (although they do
require a Java Virtual Machine to be installed). They cannot be embedded in a web
page. But, they are not prohibited from file I/O, or opening Sockets; they are full-fledged
programs.

c) Components of a Java program

i) A high level typology
What are Java programs made of? Abstractly, a program is a series of symbols that
conforms to the grammatical rules (also called syntax) of a particular programming
language.

One of the big advantages of object oriented programming is that code is reusable.
Packages allow you to easily import classes that other people have written into your
program. These classes include input/output mechanisms (to move information into and
out of programs), mathematical functions, screen control and many other things.

Class declarations include both memory declarations (which declare variables to store
information) and method declarations. Method declarations explicate how members of a
class respond to the messages of the same name. A useful metaphor is to think of the
objects in a program as actors, and methods are the scripts the actors will read when
they get cues (messages). The main method is the main script for an Application.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 22

ii) A template for every Java main method
Every Java Application must have a method named "main". This is the method that will
be executed when the program runs. The main method must have the following structure:

When your program runs, it executes each line in the main method from the top down.
The general declarations may create objects and the statements may send them messages.
After the last statement is executed and the closing } is reached, the main method, and
thus the Application, is terminated.

B. Examples:

i) The first example of a class - A Robot Greeter
Imagine you have decided to build a robot. Before going to all the work and expense of
buying and assembling the motors and gears and whatnot you wisely choose to simulate a
prototype first. You decide to write a Robot class which (recalling the problem solving
advice above) initially does nothing but say hello.

This program has only one class, named Greeter, with only the main method whose
heading reads: public static void main(String [] args)

Code Example 2.1

1 public static void main (String [] args) {
2 General Declarations
3 Statements
4 }

 Pattern for every main method.

Code Example 2.2

1 public class Greeter {
2 public static void main (String [] args) {
3 System.out.println("Greetings!");
4 }
5 }

 Greeter class to display "Greetings!".

CS231 Spring 5 Page 23

Simply Java Chapter 2: Programming: A quick dip in the pool

That’s a mouthful. Think of it as an incantation for now; like "abracadabra!".
Additionally, like any language, the Java programming language contains a number of
idioms, sequences of symbols whose meaning cannot be derived from the individual
symbols, but which must be learned as a whole, by rote.

This program is not particularly useful. The only reason for it is to help you learn how to
define classes in a simple setting where you can easily focus your attention on the
essentials. (This is the reason, if you hadn’t guessed, why experienced programmers write
a greetings program first!).

Problem Solving Technique

Create a prototype before attempting any difficult project.

If there are too many details, too many parts, too many things to keep in mind,
sometimes making the problem smaller or simpler will allow you to solve it and
then adapt that solution to the larger problem.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 24

The next box explains the code in this first example.

a) Running your program
Run this program before proceeding. If you are using this book in the context of a class
your instructor will likely have explained by now how to do that. If you are using it in
another context, now is the time to consult with an expert, or take the time to do the
tutorial, or read the documentation for the Java environment you are using. Assuming
you are using NetBeans, consult NetbeansAppendix A on page 327 for instructions.

If you have never programmed, once you have compiled and run this tiny program, you
will have taken a big first step. Before long it should take a minute to do. Unfortunately
there are many little things that you must learn, so the first time may take much longer. It
should not take more than an hour. If you spend a whole hour without success it is likely
a wise use of your time and energy to seek out someone to assist you.

Speaking of solving puzzles, here’s a clue; the two diagonals of a rectangle are equal.
Now do you know what h is (in "A problem solving exercise" on page 19)? Sorry about
the Pythagorean misdirection; the point was that how you look at a problem may

From: Code Example 2.2 on page 22

1 public class Greeter {
2 public static void main (String [] args) {
3 System.out.println("Greetings!");
4 }
5 }

This is the Greeter class declaration.
Line 1: Every class declaration begins with the word class. After "class" comes an identifier,

the name of the class being declared. identifiers must begin with a letter and be
composed only of letters, numbers and underscores. The name of the class is Greeter.

Lines 1-5: Next comes a pair of curly brackets containing a list of the memory and methods of
this class. Here there is no memory and only one method, named main. Every
Application you write must have a main method, and that method must have:

Line 2: public static void main (String args []) is the heading of the main method.
For now consider this an idiom or an incantation.

Line 3: The "body", or script, of the main method follows that heading. Like the script of every
method, it is enclosed in {}s. The main script for a Greeter consists of the single line:
System.out.println("Greetings!"); This is an idiom meaning display the literal
string of characters "Greetings!" on the screen.

CS231 Spring 5 Page 25

Simply Java Chapter 2: Programming: A quick dip in the pool

determine how difficult it is to solve. If you were determined to calculate the width of the
rectangle, you were doomed from the start. This is an instance of the following:

Problem Solving Technique

Adopt a different perspective.

How difficult a problem is depends on how you look at it. A problem that seems
impossible from one angle sometimes is trivial from another.

b) Mechanics: Typing and running your code

Whatever system you are using there are three steps to running a program:
1. creating source files - the Java code in the shaded boxes is called source

code, when it is stored in a file that is called a source file. Netbeans
writes the shell of your classes for you. Since the source code declares a
public class called Greeter, Java insists that it be stored in a file called
Greeter.java. Also, you must remember that capitalization matters! If you
type PUBLIC static void main, it will object. If you type (string []
args) it will not know what string is; it only understands String.

2. invoking the compiler -- before your program can run, it must be
converted into byte code; that is the task of the compiler after it checks
the syntax.

3. executing the program. -- if your code compiles without errors you can
then execute it. When you choose Project/Execute, Netbeans compiles
and executes your code.

If you have not done so yet, adjourn to the keyboard to create and run this robot greeter
program. Then, mysteriously you will have crossed the divide and can be labelled a
"programmer" -- writing (or even modifying) a class is something 99% of the people on
this planet have never done!. If your program had/has many errors you might turn to the
"What could go wrong" section in the back of the chapter for hints.

ii) The second example of a class - a personalized RobotGreeter
This section presents a class that is able to say "Greetings, Spike.", or "Greetings,
Buffy.", or "Greetings, whomever.", depending on who you ask it to greet.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 26

Most Java Applications have a class with a main method and little else. The main method
creates one or more objects and sends them messages; the work of the program is done by
these objects and classes. This example, and the rest in this text, will have a class which
only exists to interface with the outside world.

a) A prototype
As you may recall, if a system is complex, build a prototype first; after that works,
then (and only then!) elaborate it. First I will present a prototype with the desired
structure that always says "Greetings" (just like the last example).

Code Example 2.3

1 class PersonalGreeter {
2 public void sayHi() {
3 System.out.println("Greetings!");
4 }
5 }
6
7 public class RobotGreeter {
8 public static void main (String [] args) {
9 PersonalGreeter myGreeter = new PersonalGreeter();
10 myGreeter.sayHi();
11 }
12 }

 Prototype personalized RobotGreeter Class with main driver program.

CS231 Spring 5 Page 27

Simply Java Chapter 2: Programming: A quick dip in the pool

Notice that the PersonalGreeter sayHi() method does exactly what the old main() method
did, namely displays Greetings! on the screen by using the idiom:
System.out.println("Greetings!");

.

From: Code Example 2.3 on page 26

1 public class PersonalGreeter {
2 public void sayHi() {
3 System.out.println("Greetings!");
4 }
5 }

This is the PersonalGreeter class declaration.
Line 1: Notice that identifiers consisting of more than one word have the first letter of the

second and subsequent words capitalized.
Lines 1-5: Next comes a block (a pair of curly brackets and what’s between them). Notice

how similar it is to the Greeter class.
Line 2: Begins the sayHi method. Unlike the main method, here there is nothing in the ()’s.
Line 3: The "body", or script, of the sayHi method follows this heading. Again, like the script

of every method, it is enclosed in {}’s.

From: Code Example 2.3 on page 26

6
7 public class Greeter {
8 public static void main (String [] args) {
9 PersonalGreeter myGreeter = new PersonalGreeter();
10 myGreeter.sayHi();
11 }
12 }

This is the Greeter class declaration.
Line 9: creates an object which is an instance of the PersonalGreeter class (this is called

instantiation) and stores it in the variable myGreeter. Once it is created it can be sent
messages. Notice that the first character, ’m’, is lowercase; the convention is that
classes have uppercase first letters, objects, lowercase -- if you follow this convention,
you can tell right away from the name of a thing whether it is an class or an object.

Lines 10: sends the sayHi() message to the object named myGreeter. Recall that information
processing in Java is accomplished by sending messages to objects.You can tell that
messageName() is a message by the ()s.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 28

This prototype can only respond to one message. And its response is always to say
"Greetings! ". This program is useful to convince yourself that you can write a class and
make it do something (you did type in that program and test it didn’t you? If not, it’s time
to go to the screen and modify your previous program, just change it so that it is like the
above. Remember, programming is like juggling; can’t really learn by watching, can’t
really learn by reading. Plus, aren’t you bored with reading these details?).

b) Elaborating the prototype personalized greeter

Welcome back. Finally, let’s elaborate our prototype to make it capable of greeting
various people. The question, as always, is, "How best to accomplish that? ". Usually
there is more than one way to approach a program. We could add a bunch of methods like
sayHiToSpike() and sayHiToBuffy(), but with the use of parameters we could add a
single method that could greet whoever we wanted it to. This example does just that. It is
an extension of the previous. The changes are in bold. The rest is unchanged.

The two lines that are changed in the main method both send the PersonalGreeter object
named myGreeter the SayHi message, first with the parameter "Spike " and then with the
parameter "Buffy". When the parameter is "Spike" this message causes myGreeter to

Code Example 2.4

1 public class PersonalGreeter {
2 public void sayHi(String who) {
3 System.out.println("Greetings " + who + "!");
4 }
5 }
6
7 class Greeter {
8 public static void main (String [] args) {
9 PersonalGreeter myGreeter = new PersonalGreeter();
10 myGreeter.sayHi("Spike ");
11 myGreeter.sayHi("Buffy ");
12 }
13 }

 Personalized RobotGreeter class and driver
Line 7: There is no public in front of class. Java only allows one public class per file.
Free advice: although the access modifiers, public, private and protected are valuble in

complex programs, if you simply omit them, nothing will go wrong at this stage. Feel
free to leave them out for now (assuming your instructor is okay with that!).

CS231 Spring 5 Page 29

Simply Java Chapter 2: Programming: A quick dip in the pool

display "Greetings Spike! " and when the parameter is "Buffy", it displays "Greetings
Buffy! ". The next section will explain Strings and parameter passing, for now it is
enough to remember that things in parentheses after message names are parameters.

Quick question: How could you modify this program to greet other people?

c) The String type.

You will often work with literal strings of characters, like "Java", or "Hello world!".
There is a class in Java called String, which is designed for just that (Notice the capital
S’ in String; you remember what that means? Right, that String is the name of a class).

d) Details

Perhaps you are not in the mood to take on a bunch more detail, but would rather come
back and grapple with it later. That would be fine. If you’d rather skip ahead to run this
program first, that would be fine (it’s at "Running the personalized robot greeter" on
page 31).

From: Code Example 2.4 on page 28

1 public class PersonalGreeter {
2 public void sayHi(String who) {
3 System.out.println("Greetings " + who + "!");
4 }

The sayHi(String) method in the PersonalGreeter class.

The heading includes the access type (public), a return type (void), the name of the method
(sayHi), and a parameter (String who) enclosed in parentheses

Line 2: Says that RobotGreeter objects will respond to a sayHi message that has a String
parameter.

Line 3: The body of the sayHi method is a single message, println(String) which is sent to
System.out (the screen). There is one parameter with three parts:

1. the String "Greetings "
2. the value of the parameter named who
3. the String "!";

Java treats the plus sign after a String as the concatenation operator, so it pastes
those three things together to make a single String, namely, "Greetings ????!", where
the ???? is the value of the String parameter was passed with the sayHi(String)
message.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 30

e) Using parameters to pass information to a method.

Every time a RobotGreeter follows this script it will display "Greetings" and "!". But, the
value of the parameter, who, may be different each time the script is followed.
"Greetings" and "!" are inside double quotes and so are String literals, they will be
displayed literally. In contrast, who, is not in double quotes, so it will not display the
letters ’w’-’h’-’o’, but rather the current value of the parameter named who. The value of
who will be whatever string was in the parentheses where the sayHi(String) message
was sent to a RobotGreeter object. There is no way to tell what that value might be
without looking there.

From: Code Example 2.4 on page 28

5 public class Greeter {
6 public static void main (String [] args) {
7 PersonalGreeter myGreeter = new PersonalGreeter();
8 myGreeter.sayHi("Spike ");
9 myGreeter.sayHi("Buffy ");
10 }
11 }

The Greeter class that creates (instantiates) a PersonalGreeter and sends it
sayHi(String) twice.

Line 7: Creates a new PersonalGreeter and stores it in the variable called myGreeter.
Line 8: Sends the sayHi(String) message to myGreeter with the String parameter "Spike". To

repeat, this will cause the myGreeter object to follow (or, in technical terms,
"execute") the sayHi(String) method (script), using "Spike" as the value of the
String parameter named who. Thus, inside the sayHi(String) method in
PersonalGreeter, "Greetings " + who + "!" will turn into "Greetings Spike!", and be
sent to System.out along with the println(String) message, and thus will end up
on the screen. Many small steps. The good news is, the computer carries them out
tirelessly.

Line 9: Exactly the same, but with the parameter value "Buffy".
Line 8 was explained very slowly; ordinarily one might say instead: Line 9: Sends the
sayHi message to myGreeter with the parameter "Spike". And, to an experienced Java
programmer, myGreeter.sayHi("Spike") means exactly that, and requires no
explanation at all!

CS231 Spring 5 Page 31

Simply Java Chapter 2: Programming: A quick dip in the pool

f) A Digression

If you have never programmed before, there are a number of new concepts in the
previous example. If you did not understand it, read it again. Type it in. Get it to work.
Now, read it again. Hopefully it will make more sense. If it still doesn’t, DON’T PANIC!
There are many concepts in any discipline that cannot be grasped until you have had a
certain amount of experience. Let me tell you a story. When I am trying to learn a new
computer system or language I usually read the entire manual or language description; it
normally only takes 4 or 5 hours. Since I know little or nothing about how to use the new
system or language, I can’t understand much of what I read; thus, whenever I lose the
thread, can’t understand what I’m reading, I just skip to the next section. Then I go and
play with the system or language for a few days or a few weeks, inventing little problems
to solve. This inevitably leads to numerous unsolved mysteries and frustrations. Then, I
reread the manual. This second reading is often very illuminating as now I know
something of the system and have a number of questions I want to answer.

Learning to program takes time. Plus, a complete explanation of parameters is in Chapter
5. For now, patient reader, please reserve your reservations and proceed on the
assumption that everything will become clearer shortly.

g) Running the personalized robot greeter

Before reading on, go now to a computer. Input and run this example (or quicker, modify
the Greeter class, but remember if your class is called Foo, then it must be stored in a file
called Foo.java). In NetBeans, you can change the name of the class by right-clicking on
it in the Filesystems pane (on the left) and selecting Rename.

After that works, insert your name and the names of several friends for the robot to greet,
compile and run it again.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 32

iii) Third example: A minimal Applet

a) The power of inheritance
The second kind of Java program is an Applet. Before writing a RobotGreeter Applet we
will try out the simplest possible Applet (you remember, first write a prototype).

You might well be asking yourself if this class that appears to do nothing can run; or
what it might do if it runs. Try it and see!

b) Executing an Applet

To run an Applet (yes, run is a synonym for execute!) requires four steps: create the
source code, compile the source code to make a .class file, create HTML code to start the
Applet, open the HTML code from a Java enabled browser. Fortunately Netbeans handles
these details for you. See NetbeansAppendix B on page 329.

c) A greetings Applet that uses a graphics context

Now for an Applet version of a robot greeter. There are a number of ways that one might
make an Applet that printed "Greetings!". This particular method uses paint(Graphics),

Code Example 2.5

1 public class RobotGreeter extends java.applet.Applet {}

A minimal Applet
Line 1: A class declaration. It makes RobotGreeter extend java.applet.Applet; this means a

RobotGreeter can do anything a java.applet.Applet can. Since there is nothing between
the {}s, the RobotGreeter class does not add anything to, or change anything about the
java.applet.Applet class; it is essentially another name for that class.

CS231 Spring 5 Page 33

Simply Java Chapter 2: Programming: A quick dip in the pool

which is the standard method for drawing in a Component, and you’ll be seeing it
regularly later.

Proceed to the screen and try this one out.

C. Conclusion
The first program that experienced programmers learning a new programming language
write is one that simply says "Greetings", or in the older C tradition, "Hello world". This
is because expert programmers have learned from painful experience that if you try to do
complicated things before simple things, you can waste more hours than you might
initially believe.

By writing a program that merely writes a word or two on the screen you either encounter
all the difficulties of a new programming environment in the simplest possible context,
where you will know to focus your attention on the environment instead of the program;
or, you will discover that the programming environment is easy to use and go on to more
difficult tasks immediately.

Code Example 2.6

1 public class FirstApplet extends java.applet.Applet {
2
3 /** Initialization method that will be called after the applet is loaded
4 * into the browser.
5 */
6 public void init() {
7 }
8
9 public void paint(java.awt.Graphics g) {
10 g.drawString("Greetings!", 0, 100);
11 }
12 }

An Applet that writes Greetings! on the screen.
Lines 9-11: The only change to the prototype is the method, public void paint(Graphics); this is

automatically invoked when the Applet starts.
Line 9: The method header, think of this as "abracadabra".
Line 10: The only statement in paint, draws the String "Greetings!" on the screen at location 0,

100; that’s column 0 row 100 (measured in pixels). Try some other numbers.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 34

Either way, this is an example of an important problem solving (or in this case problem
reducing) technique -- build a prototype first!

This chapter presented the two types of Java greetings programs and explained roughly
how they were constructed. Although numerous details were presented, many others were
glossed over, or explicitly ignored. The next two chapters will address some of those
skipped details as well as introduce more involved examples.

D. End of chapter material

i) Problem Solving Techniques

Problem Solving Technique

Create a prototype before attempting any difficult project.

Problem Solving Technique

Adopt a different perspective.

ii) What could go wrong?
Any number of things! When you first program, the details are legion and any one can
trip you if you forget it. The good news is that ignorance can be cured.

 Problem 2.1 -- I don’t have access to a computer.
 Possible causes: Many.
 Possible solutions: Gain access.

 Problem 2.2 -- Compiler error messages. There are many ways to generate syntax errors.
Missing a single keystroke will generate an error and can generate multiple
errors. Capitalization errors can be very difficult to find. Here are a few examples
from:

examples/Greeter.java [21:1] not a statement
 System.out.println"Greetings!");
 ^

CS231 Spring 5 Page 35

Simply Java Chapter 2: Programming: A quick dip in the pool

examples/Greeter.java [21:1] ';' expected
 System.out.println"Greetings!");
 ^
2 errors
Errors compiling Greeter.

The errors here come from omitting the (after println.

examples/Greeter.java [11:1] 'class' or 'interface' expected
publc class Greeter {
^
1 error
Errors compiling Greeter.

The error here comes from omitting the i in public.

examples/Greeter.java [20:1] cannot resolve symbol
symbol : class string

location: class Greeter
 public static void main (string args[]) {
 ^
1 error

Errors compiling Greeter.
The error here comes from typing an s instead of an S in String.

iii) New terms in this chapter
Applet - a Java program that runs in the context of a web browser. Also a class in java.ap-

plet. 20
Application - A java program that runs independently. 21
bug - An error in a program. 19
byte code - The intermediate form that the Java compiler puts into the .class file to be in-

terpreted by the Java Virtual Machine when the program executes. 25
Component - a generic class in java.awt that includes Button, TextField and other common

GUI components. 33
concatenation - to attach together end to end. If you concatenate "psycho", "the", and "rap-

ist", you get "psychotherapist". 29
identifiers - Java names. Must start with a letter and be composed of only letters, digits and

underscores; case matters. 24
idiom - a sequence of symbols whose meaning cannot be derived from the individual sym-

bols, but which must be learned as a whole, by rote 23
Java Virtual Machine - Software that creates the Java environment on a particular machine.

21
main method - where execution begins when your Application runs 21

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 36

Package - A group of methods arranged so you can easily import classes that other people
have written into your program 21

parameter - information sent along with a message which invokes a method 28
problem solving -- The behavior one engages in when one is stuck and doesn’t know what

to do next. 18
prototype - a simplified, preliminary version of something, in this case, a program. 26
public - An access type; means anyone can see this. 25
Socket - A mechanism to connect one computer to another (virtually). Also a class in ja-

va.network. 21
String - the Java class whose instances are each a literal series of characters. 29
syntax - Grammar. Every programming construct has both syntax (grammar) and seman-

tics (meaning). 21

iv) Review questions
 2.1 What are the two types of Java programs?
 2.2 What’s the difference between them?
 2.3 How (in the context of a Java program) do you print a message on the screen?
 2.4 How is information processing accomplished in Java?
 2.5 What are {}s used for?
 2.6 When do experienced programmers write the greetings program?
 2.7 What problem solving technique are they using when they do?
 2.8 What are parameters used for?
 2.9 Why is the S in String a capital letter?
 2.10 What is public static void main(String [] args)?

v) Exercises
 2.1 Add these lines to your program and see what they print.

System.out.println("2+2");
System.out.println(2+2);
System.out.println(2+2 == 4);
System.out.println(2 > 3);
System.out.println(2 < 3);
System.out.println("backslash-t, i.e. \t is a tab\ttab\ttab");
System.out.println("backslash-n, i.e. \n is a newline\nnewline\nnewline");

 2.2 Now try these
int x=17;
System.out.println(x);
System.out.println("x=" + x);

CS231 Spring 5 Page 37

Simply Java Chapter 2: Programming: A quick dip in the pool

System.out.println("Which of those outputs was easier to understand?");
System.out.println(x == 17);
x = x + 1;
System.out.println("after adding 1, x=" + x);
System.out.print("is x still 17? No. See? When" +
 " it compares them it says ");
System.out.println(x == 17);

 2.3 Modify the paint method in your Applet by adding these lines.
 g.drawOval(200,200,100,100);
 g.fillOval(400, 300, 75, 288);
 g.setColor(java.awt.Color.RED);
 g.drawRect(27, 27, 300, 10);
 g.setColor(java.awt.Color.GREEN);
 g.drawLine(30, 300, 400, 20);

It is likely you will need to enlarge the Applet window before you will see them all.

 2.4 Now modify paint to draw a simple picture, instead of random stuff like in the
previous question. Draw a simple house. Then try your house. Then the front of the
building your class meets in.

Simply Java Chapter 2: Programming: A quick dip in the pool

CS231 Spring 5 Page 38

CS231 Spring 5 Page 39

Simply Java Chapter 3: Class design and implementation

Chapter 3: Class design and implementation

A. Introduction

This chapter illustrates the process of class design, coding and testing. It starts with a
description of a simple ATM simulator and concludes with a working Applet that
implements it. The program is grown in stages, starting with a very simple prototype and
adding features only after each prototype works. The resulting Account class will be
incorporated into a larger bank database system in Chapter 11.

i) A description of the task
Imagine you are given this description for a programming assignment: Write a minimal
ATM program that will manage 3 bank accounts. Each account will have a name and a
balance. Allow users to display their current balances and withdraw as much (simulated)
money as they want with a graphical user interface (GUI).

ii) Before beginning to program: Design!
There is a strong impulse to start to program too soon. When given a problem
description, some beginning programmers start typing before they have a clear idea of
what it is they are doing. In a way this is unavoidable, since a novice programmer knows
practically nothing about the programming language. Nevertheless, it is possible to have
a clear idea of what one is attempting to accomplish even if the how is a bit unclear.

It is human nature to experience confusion as pain. Experienced programmers have
learned not to start typing before they have a clear understanding of what it is they are
attempting. Painful, frustrating experiences have taught them to think through problems
before committing to code. Therefore, between the time they read or formulate a
description of a programming task, and when they sit down to type code, they do what is
called design. Design can take many forms, but it always features clear, simple
thinking. A coherent design supports the programming process, and can make the
difference between success and failure.

One design technique is to start with the user interface; decide what the user will see and
what actions the user will be provided; then design classes that support those actions.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 40

a) The user interface
Start by drawing a picture of what the user will see when the program runs. For
simplicity, start with a single bank account. To design a good user interface you must
consider what information will be presented to the user and what actions the user will
take to interact with your program. What are those actions and information in this case?

If you reread the description (do that!) you will see that the user can do just two things:
ask for the current balance, and withdraw funds. For a withdrawal the user must specify
how much money they want and that information must be input to the program. To
display their balance they only need indicate that they wish to see it, so a button press
will be sufficient, and then information must be output to the user.

Knowing that, what sort of user interface does your ATM need? At minimum, it will
need: 1) a button to request the current balance; and, 2) somewhere to type the amount to
withdraw. The Java Components for these two screen objects are Button and TextField.
You are probably familiar with both of these components, they appear on many web
pages. When you fill out a form on the web, the boxes you type in are typically
TextFields, and the buttons, Buttons. Grab a piece of paper and make a quick sketch of
what your user will see when your simulated ATM runs. Note that you can do this
without any knowledge of how the program will work.

b) What classes will we need? What will they do?

A principle of object design is to create classes that correspond to the things that the
program is modelling, and to store information in the objects corresponding to where it
resides in the world. A real ATM machine communicates with a bank; user information is
kept in accounts. So, it is reasonable to think of having an Account class, and to store
information about each person’s account in a separate Account object. Note the use of
capital letters at the beginning of class names; this usage is to both remind you that class
names begin with capitals and also help make clear when words refer to classes (as
opposed to objects in the world).

So, to simulate an ATM associated with a bank that has three customers we will need
three Accounts (one to keep track of each customer’s name and balance), a Bank (to
contain the three Accounts), and an Applet (to handle the GUI). That would be a lot of
code to write all at once, so those three tasks will be attempted one at a time and then
combined. This is an example of the following:

CS231 Spring 5 Page 41

Simply Java Chapter 3: Class design and implementation

Problem Solving Technique

Stepwise refinement

First, understand the problem, then break it into 5+/- 2 subproblems. For each, if
it is trivial, solve it, if it is not trivial, solve it by using stepwise refinement

The first step is the most important - until you clearly understand a problem, any attempt
to solve it is very unlikely to succeed. Sometimes people attempt to solve problems
before understanding them; mostly they fail and are frustrated.

Notice that this is a recursive definition, the thing being defined is used as part of its own
definition. Circular definitions are bad. Recursive definitions can be very good, so long as
they do not recurse forever. Since the subproblems are smaller than the original, as this
recurses, eventually they are all so small as to be trivial and the recursion stops.

B. Building and testing the prototype GUI
Figure 3.3 is a rough sketch of a possible GUI for an ATM that keeps track of the balance
of a single bank account. There is a Button with the label "Display" and a TextField with

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 42

the text "Amount to withdraw" above it, and "Current balance" below it. The TextField
will be used to both enter the amount to withdraw and display the current balance.

The next sections will explain how to build and test a GUI with those two components
using Netbeans.

i) Getting Started
1. Start Netbeans and create a new project with a GUI Applet (see NetbeansAppendix C

on page 331) for details.
2. Add a Button with an action and test it (NetbeansAppendix D on page 331).
3. Add a TextField to type the withdrawal amount in and display the balance (see

NetbeansAppendix G on page 337).

ii) Using the Button to alter the TextField
When the user presses the Button, its ActionPerformed method will be executed.
Netbeans writes the shell of the method; you, the programmer, must insert code to make
it do what you want when the button is pushed. Add this line of code after line 27 in Code
Example 3 on page 332
 textField1.setText("Greetings!");

Figure 3.1

 Rough sketch of GUI for the ATM.

CS231 Spring 5 Page 43

Simply Java Chapter 3: Class design and implementation

Execute the modified program, it should make the TextField say Greetings when you
press the button.

iii) Simulating one bank account by hand (without writing the Account class)
You know how to get the text from a TextField (getText()), how to set the text in a
TextField (setText(String)), and how to get control when a Button is pushed. Before
going on to writing classes, let’s experiment with a simple ATM with just one bank
account balance stored in the Applet. You must do the following three things:
1. Create a variable to contain the current balance
2. When the user types an amount to withdraw and hits enter, get the withdrawal

amount into the program as a number
3. Subtract it from the balance and display the new balance
These will be explained next; after some practice the explanations will make more sense.

a) Create a variable to contain the current balance
Assume the bank account starts with 1000 dollars. The program must store the value
1000, and then decrease it when money is withdrawn. To store information (like 1000) a
Java program uses what is called a variable. A variable must be declared, with a name
and a type and a value, like this:
 int balance = 1000;

This declares a variable whose type is int (i.e. like an integer, it stores one whole number)
and sets its initial value to 1000 (see Figure 3.2). Add that line of code to your test

Applet, outside of any method, but inside the class. You may be asking, "Where is inside
the class?". The class definition is everything between the {}’s following the name of the

Figure 3.2

 An assignment statement, illustrated.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 44

class. Now, you might ask, "Where is outside any method?"; this will be explained soon,
for now before line 3 in NetbeansAppendix 3 on page 332 would do.

b) When the user hits enter, get the withdrawal amount

Change the body of textField1ActionPerformed by adding these lines:
 int withdrawal = Integer.parseInt(textField1.getText());
 System.out.println("withdraw=" + withdrawal);

The first gets the text from the TextField (which has type String), converts it to a number
(Integer.parseInt() does that) and stores it in a variable called withdrawal. The second
prints that value, so you can see if it worked. Try it out now (don’t forget to type a
number in the TextField! What happens if you type anything else?).

c) Subtract it from the balance and display the new balance

Add two more lines (after the two you just added):
 balance = balance - withdrawal;
 System.out.println("new balance is: " + balance);

The first subtracts the withdrawal from the balance and store the remainder back in
balance. The second, um, prints the new balance. Execute this code. Try hitting enter
more than once.

Congratulations! There are three things that do all the work in computing: input,
assignment and output; you have just used all three! Now, on to creating classes.

C. A generic problem solving technique
Let us take a slight detour for a problem solving technique that will be useful in thinking
about the Account class. Try to answer this word problem (even if you don’t like algebra).

Mary is twice as old as John. Two years ago, she was 3 years older than he will
be next year. How old is John?

Maybe you can read that, see through it, and just know the answer. Maybe you have
learned a technique called "guess and check" where you try out ages and adjust them in
the right direction until you stumble on the answer. Maybe you know how to write
equations to compute the answer. The first technique is a great one, if it works. Guess and
check finds the answer, but does not give you any insight into the problem. Writing
equations and solving them is a more general and useful method. But not everyone can do
this sort of algebra problem. Here’s a generic problem solving technique that may allow

CS231 Spring 5 Page 45

Simply Java Chapter 3: Class design and implementation

you to solve such problems (and which has direct relevance to designing object
programs).

Problem Solving Technique

What are the things? What are their relationships?

By answering these two questions you concretize your conception of the problem.
Just doing that may make solving it easier because it will cause you to think
carefully about it. In the context of object design, the things are potential classes,
the relationships, potential messages.

In the problem at hand, at first glance there are several things, Mary, John, and their ages.
But, if you think about it, you will soon realize that Mary and John don’t matter, only
their ages. For brevity, call their ages M and J. And not only are their current ages of
interest, but also Mary’s age two years ago (M-2) and John’s next year (J+1). Those are
the things of interest.

The two statements before the question state two relationships. They can be rewritten as:
(Mary is twice as old as John.) M = 2*J; and, (Two years ago, she was 3 years
older than he will be next year.) M-2 = (J+1)+3. The latter simplifies to M = J+6, and
you can then substitute 2*J for M to find the answer.

D. Account class: Design, implementation and testing

Your program must manage three bank accounts. It would be natural to create three bank
account objects, where each would correspond to and hold the information for one
account. To be able to create objects (like bank account objects) you must first define a
class. The class will then manufacture that kind of object when you tell it to.

i) Account class design
Let’s apply the "things and relationships" technique to the ATM problem. The things in
this problem are bank accounts, plus the names and balances of each account; the
relationships between those things is that each account has a name and balance associated
with it. Each account will need a way to store those two pieces of information.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 46

Along with the information to be stored in each account, we must also consider what
actions will be performed on, or using, that information. There are only two: display, and
withdraw. In the former the balance (and perhaps the name) must be displayed, in the
latter the balance must be reduced when money is withdrawn.

The details of how to store the information in each account and how to access and change
it will be covered in the next section.

ii) Converting the design to Java code
A class definition includes declarations of variables (where information is stored) and
methods (which operate on that information).

a) Variables (state)
Variables encode state. This usage of "state" is very similar to a common English usage.
If someone says to you, "What is the state of your bank account?", they mean, how much
money is in it. Here are some facts about variables that you will need to know later:
1. Variables are containers for information. The purpose of variables is to hold

information. That information may be of various types; numbers, letters, words, or
even objects. Java variables are similar to, but different from, variables in algebra.
Like in mathematics, Java variables might contain any number of values. The
particular values determine the state of the computation (see "State and its
representation" on page 2).

2. There is only one way to change the information in a variable, which is to execute an
assignment statement. In algebra, you might encounter a formula like x = y * 2,
and be asked, if y=2, then what is x? In Java, by contrast, x = y * 2; means take the
value of y, multiply it by 2, and store that value in the variable x (or assign that value
to x). So, if the value of y were 17, and that assignment statement were executed,
afterwards the value of x would be 34.

3. Variables hold exactly one value at a time. Whatever value had been in x before the
assignment statement was executed is irretrievably lost. If you wanted to keep the old
value, you would need another variable to hold it.

4. Every variable has three attributes: name, type and value. Java is what is called a
typed language. In addition to a name and a value, every variable in Java has a type.

For now we will only consider variables of two built-in types. The first you have already
seen; String is used to store a series of literal characters. The second, int, is used to store
whole numbers, like 12, 1,000,000, or -37.

CS231 Spring 5 Page 47

Simply Java Chapter 3: Class design and implementation

b) Adding variables to the Account class

To start with, create an Account class in Netbeans that includes a main method. Follow
the instructions in NetbeansAppendix M on page 340 -- Creating a class with a test
driver. Add these variables after line 12 in Code Example 7 on page 340.

So far, this class is not very useful because although each Account could store a name
and a balance, there isn’t any way to do anything with them. That’s what methods are for.

c) Methods (action) - Accessors and Withdrawal

Methods allow classes to do things, to perform actions. You can write methods to do
whatever you like. The body of a method has a list of instructions to follow to accomplish
whatever that method is supposed to do.

• Accessing/changing information in an object

There are two things that our Accounts are supposed to do besides retaining the name and
balance associated with the Account: they must allow some other method, outside of
Account to discover the value of the balance variable, and also allow the balance to be
changed when money is withdrawn. So the questions that must be answered are: 1) How

Code Example 3.1

 String name; // a String variable called name
 int balance; // an int variable called balance

 Adding the variables to the Account class.
int balance; declares a variable of type int with the name balance.
"// an int variable called balance" is a comment meant for a person to read; Java

ignores it.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 48

to get the value of a variable that’s inside an object? and 2) How to set the value of a
variable that’s inside an object?.

The answer is accessors, methods that allow you to access the variables inside objects.
These common, simple, useful methods are not easily understood at first.The problem is
that even though accessors all follow the same pattern, there are many details involved in
the mechanisms that implement them. Once you have programmed for a few weeks (or a
half a dozen, depending on how often and how carefully you do it) accessors will seem
easy and natural. For now, accept them as an idiom. Add these two methods right after
the two variables you already added.

This class, though very small, can now be tested. To reiterate, it is important to test your
code as you develop it; that way, when something goes wrong, it is easier to isolate the
error -- there are simply fewer places to look.

• Testing the accessors

How can you test this class? You write what is called a driver program, the sole
purpose of which is to test your class. This may seem like a waste of time, but it is not!
To convince yourself that a class works you must test all its methods. Fortunately, there

Code Example 3.2

1 public void setBalance(int nuBalance) {
2 balance = nuBalance; // set the balance
3 } // setBalance
4
5 public int getBalance() {
6 return balance; // return the balance
7 } // getBalance

 Accessors for balance.
Lines 1-3: The setBalance method sets the balance to the value that is sent along with the

message.
Line 4: This blank line is inserted to set off the methods visually. It is a simple, but important,

element of style.
Lines 5-7: The getBalance method returns (i.e. sends back as its value) the current value of the

balance variable.

CS231 Spring 5 Page 49

Simply Java Chapter 3: Class design and implementation

are only two: getBalance() and setBalance(int). Go to the Account class. Modify the main
method so that it looks like this:.

Now, set the main class (Project/Set Project Main Class) to Account, and execute your
program. Assuming it displays 0 and then 1234, it worked and you can move on to the
withdraw(int) method. If you made any typing mistakes, fix them. Then, forward!

• Withdrawals

Along with accessing the balance variable, the other action our Account class must take
is handling withdrawals. Therefore it will need a method, which might as well be named
withdraw. It is important to give methods (as well as classes and variables) descriptive
names. That makes less things to remember.

When a user types an amount to withdraw and then hits the Enter key we should send
our Account object a withdraw() message. Will the withdraw() method need any
information to carry out its task? Yes, it needs to know how much to withdraw! So it will
need a parameter to pass that information to the method. The amount to withdraw is a
number, in whole dollars, so the type of the parameter is int. The name of the parameter
is up to us; it can be any legal identifier -- in the example, the name amountToWithdraw
was chosen (see Code Example 3.4).

How should the withdraw method change the state of the Account object which receives
it? This is the same as asking how the state of a bank account should change when a
person takes money from it using an ATM. The answer is that the balance should be

Code Example 3.3

1 public static void main(String[] args) {
2 Account myAccount = new Account();
3 System.out.println("Before balance=" + myAccount.getBalance());
4 myAccount.setBalance(1234);
5 System.out.println("After balance=" + myAccount.getBalance());
6 }

 Accessors for balance.
Line 2: Create and store an Account, call it myAccount.
Line 3: Check the initial balance, it should be 0. This tests getBalance().
Line 4: Set the balance to 1234.
Line 5: See if the balance is now 1234. This tests setBalance() and getBalance()

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 50

reduced by the amount of money withdrawn. So, first our method must calculate the new
balance by balance - amountToWithdraw, and then store that amount back in the balance
variable. To change the value of a variable you use an assignment statement; like this:
balance = balance - amountToWithdraw;. This assignment statement is the only line in
the body of the withdraw method .

Add this method to your Account class and test it. How to test? Add two more lines to
your main method, possibly those in Code Example 3.5.

Assuming your program says the final balance is $999, this means all three methods work
and you are ready to use your Account class along with your GUI to build the complete
system. Well, almost ready. There’s the small matter of keeping track of three accounts
instead of one.

Code Example 3.4

1 public void withdraw(int amountToWithdraw) {
2 balance = balance - amountToWithdraw;
3 }

 The withdraw method for the Account class.
Line 1: The method heading. There is one parameter of type int whose name is

amountToWithdraw.
Line 2: An assignment statement. This will subtract whatever value is in the parameter

amountToWithdraw from the value in the variable balance (inside whatever Account
the withdraw message was sent to), and then store the result of the subtraction back in
that same variable (inside the Account object that got the withdraw message).

Code Example 3.5

1 public static void main(String[] args) {
2 Account myAccount = new Account();
3 System.out.println("Before balance=" + myAccount.getBalance());
4 myAccount.setBalance(1234);
5 System.out.println("After set balance=" + myAccount.getBalance());
6 myAccount.withdraw(235);
7 System.out.println("Withdrew, balance=$" + myAccount.getBalance());
8 }

 Testing the withdraw method in Account as well.

CS231 Spring 5 Page 51

Simply Java Chapter 3: Class design and implementation

iii) Objects and classes
Novice programmers sometimes struggle with the distinction between classes and
objects. It is rather like the relationship between the part of speech, noun, and individual
nouns. Words like "dog", "house", and "money", are nouns. I.e., "dog", "house", and
"money", are instances of the category noun. Similarly, an object is an instance of a class.
Every object is an instance of some class.

If you are just learning to program, until very recently you had never heard the terms
class and object used the way they are used in the context of programming. This
unfamiliarity makes making sense of the difference between them rather difficult. It gets
easier with practice.

To review: classes are patterns for creating objects of that type; they define the
information those objects will contain (variables) and the actions they can take
(methods). Once the class is defined, you can create (instantiate) as many objects as you
want of that type. Once you have created an object, you can send it messages to
accomplish whatever task you are working on.

a) Cookies and cookie cutters metaphor
A useful metaphor for classes and objects is cookie cutters and cookies. If you have a
cookie cutter in the shape of a star, you can use it over and over to make many star-
shaped cookies. After the various star cookies are cut, they can be decorated in different
ways. Classes are patterns (like cookie cutters) for making objects (cookies). All objects
(also called instances) of a particular class have the same form (like all the cookies from
the same cutter). Every Account you create (by saying new Account()) will have its own
balance variable and its own name variable. These variables may contain different values
in different objects.

It’s important to remember the distinction between objects and classes. For while cookies
can be delicious, if you bite a cookie cutter you could hurt your mouth; plus it wouldn’t
taste good.

b) new Account(); Instantiation! Alakazam!

Before you can send a message to an Account you must create it, and store it in a
variable. This is demonstrated in "Code Example 3.5 on page 50" on page 52.
Instantiation may safely be considered as magic for the present. In Chapter 5 the details
will be explained, and at that point it will be essential to understand, but for now you

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 52

might just think of new Account() as the incantation to make a new Account object
appear.

Recall, the convention is to name classes beginning with a capital (Account is the name
of the class), and objects (or instances of the class) with a small letter (myAccount is the
name of the object).

c) Instances and instance variables

The Account class has two instance variables, name and balance. Therefore, every object
of type Account (or instance of Account) has its own instance variables named name and
balance; just as real every bank account has a name and a balance associated with it. You
will see an example of what this means in the next section.

Exercise: Use your Account class in conjunction with your GUI to keep track of
the balance of one account. You already have all the necessary code; all you need
is to understand it well enough to rearrange it to do the job.

E. Creating and testing the finished GUI

i) GUI design
We have built and tested a prototype GUI and completed the Account class. We are now
ready to solve the original problem. We will again follow the technique of starting with
the user interface and then writing the classes to support it. Designing the GUI both puts
our focus on the user and what actions they can take (which is a good policy) and helps
us form an image of the task ahead of us.

From: Code Example 3.5 on page 50

1
2 Account myAccount = new Account();

Instantiation. A line of code that creates an Account object.

Line 2: There are two parts here: 1) Account myAccount - declares a variable of type Account
(that’s the class name) whose name is myAccount. 2) new Account() -- instantiates an
Account (i.e. creates an instance of an Account object). The equals sign between them
makes these two parts into an assignment statement. The action of this assignment is
to store the newly created Account in the myAccount variable.

CS231 Spring 5 Page 53

Simply Java Chapter 3: Class design and implementation

We already have a display Button and a TextField to handle withdrawals; all we need is a
means to choose between the three accounts. How should the user select the account to
withdraw from or display the balance of? In a real ATM machine, the user inserts their
card and then enters their PIN. But, we don’t have a card reader, and don’t want to keep
track of PINs just yet. A simple solution is to add three buttons for the three accounts.
When the user pushes the Account2 button, the program will act as if the owner of the
Account2 has successfully logged in; the program will display the balance from
Account2. Subsequent withdrawals will come from Account2, until another Button is
pushed.

ii) GUI implementation
Add three more Buttons to your GUI (see NetbeansAppendix D on page 331 if you’ve
forgotten how). The Buttons appear named Button2, Button3, and Button4 and they are
labelled the same way. These names do not remind you what they mean, and the user will
object if to select account 3, they must push the Button labelled Button4. Just as it is
important to give classes, variables and methods descriptive names so that you can
remember what they do without thinking, it is important to label Buttons well or the user
will become confused. When there is only one, the name is not so important, but the more
there are, the more it matters. Change the labels on the Buttons to "Account 1", "Account
2" and, "Account 3" (see NetbeansAppendix I on page 338). Change their names to
"selectAccount1Button", "selectAccount2Button", and "selectAccount3Button" (see
NetbeansAppendix K on page 339). Make sure the Button labelled "Account1" is named
"selectAccount1"! It is very confusing and hard to figure out when the Account1 Button
causes access to Account3.

Now, add actions for the three new Buttons (double-click them, remember?). They are
supposed to select the current account, so have each one send the Bank a message:
selectAccount1(), selectAccount2(), or selectAccount3(). Naturally, the
selectAccount1Button should send the bank the selectAccount1() message.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 54

Here’s how the actionPerformed code Netbeans wrote for the account1Button looks:

All you need to do is add code to tell the bank to selectAccount1(), as shown in Code

Example 3.7. Do the same for the other two Buttons. You will notice that Netbeans
indicates that there is an error on each of those lines. This is because it does not know
what theBank means. You will need to add the line
 Bank theBank = new Bank();

outside of any method (details below) and create the Bank class. After you do these two
things, the errors will go away and the program will be ready to run.

F. The Bank class: Design, implementation and testing

i) Bank class design
The task of the Bank class is to simulate a tiny bank with three accounts. Thus, it will
need three Accounts. It must also keep track of which Account is currently in use, and
make withdrawals from that Account.

There are two tasks we must accomplish; 1) create the three accounts, and,
2) conceptualize and implement a technique to remember which of the accounts the user
is currently working with. It turns out that declaring one more Account variable and
setting it equal to whichever Account is currently in use will be sufficient; see below.

Code Example 3.6

1 private void account1ButtonActionPerformed(java.awt.event.ActionEvent e{)
2 // Add your handling code here:
3 }

 actionPerformed() for account1Button.
Notice that the name of the Button appears as part of the method name.

Code Example 3.7

1 private void account1ButtonActionPerformed(java.awt.event.ActionEvent e{)
2 theBank.selectAccount1();
3 }

The code to add

CS231 Spring 5 Page 55

Simply Java Chapter 3: Class design and implementation

ii) Converting the design to Java code
The first thing to do is to create a Bank class with a main method; see
NetbeansAppendix M on page 340 for instructions. Netbeans will write the following
class

a) Variables
To create the three accounts, plus the current account variable, add these four lines after
line 6 in Code Example 3.8. That’s all it takes.
 Account account1 = new Account();
 Account account2 = new Account();
 Account account3 = new Account();
 Account currentAccount = account1; // to start with

The first three lines declare variables called account1, account2 and account3,
instantiating three Accounts and storing one in each. The fourth declares another Account

Code Example 3.8

1 /*
2 * Bank.java
3 *
4 * Created on April 21, 2004, 2:40 PM
5 */
6 public class Bank {
7
8 /** Creates a new instance of Bank */
9 public Bank() {
10 }
11
12 /**
13 * @param args the command line arguments
14 */
15 public static void main(String[] args) {
16 }
17}

The initial Bank class

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 56

variable called currentAccount, and sets it equal initially to account1. Thus if you do a
withdrawal before pushing any of the three buttons it will come from account1.

b) Methods

The bank needs to withdraw money from and display the balance of the current account;
it also must be able to set the current account. Code Example 3.10 shows the methods
that do these things. These may be inserted anywhere in the class block of the Bank class,
as long as they are outside of other methods. Right after the variables would be fine.

Code Example 3.9

6 public class Bank {
7
8 Account account1 = new Account();
9 Account account2 = new Account();
10 Account account3 = new Account();
11 Account currentAccount = account1; // to start with
12
13 /** Creates a new instance of Bank */
14 public Bank() {

The Account declarations inserted into the Bank class.

Code Example 3.10

1 public void selectAccount1() {currentAccount = account1;}
2 public void selectAccount2() {currentAccount = account2;}
3 public void selectAccount3() {currentAccount = account3;}
4
5 public int getBalance() {
6 return currentAccount.getBalance();
7 }
8
9 public void withdraw(int withdrawalAmt) {
10 currentAccount.withdraw(withdrawalAmt);
11 }

The method declarations for the Bank class.
Both getBalance() and withdraw just pass the buck to the Account class by sending the same

message to the currentAccount object. Notice that getBalance returns the value that
comes back from Account’s getBalance.

CS231 Spring 5 Page 57

Simply Java Chapter 3: Class design and implementation

c) Testing

Modify the main method in Bank as shown in Code Example 3.11. Then set the starting
class to Bank (Project/Set Project Main Class...) and run the program again to make sure
the Bank is working correctly. Sometimes it is helpful to draw a picture of the state of the

program at various points during its execution. For instance, after line 2 in Code Example

Code Example 3.11

1 public static void main(String[] args) {
2 Bank theBank = new Bank();
3 System.out.println("Initial acct1 balance=" + theBank.getBalance());
4 theBank.withdraw(100);
5 System.out.println("-100 acct1 balance=" + theBank.getBalance());
6 theBank.selectAccount3();
7 System.out.println(" acct3 balance=" + theBank.getBalance());
8 theBank.selectAccount1();
9 System.out.println(" acct1 balance=" + theBank.getBalance());
10 }

Test code for the Bank class.
Line 2: Create a new Bank object and store it in a Bank variable named theBank.
Line 3: Display the balance of account1 (remember currentAccount starts as account1).
Line 4: Withdraw 100 dollars from account1
Line 5: See if the balance is really -100.
Line 6: Tell theBank to change the current account to account3.
Line 7: See that getBalance now returns 0 (instead of -100)
Line 8: Go back to account1.
Line 9: Verify that it’s balance is still -100.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 58

3.11 executes, the state of the program looks roughly like Figure 3.3. After line 6

Figure 3.3

 The state of the program after line 2 in Code Example 3.11 executes.
The main() method has a variable named theBank; it has four variables. The first three point to

the three Accounts. The fourth, currently points to account1 as well.

CS231 Spring 5 Page 59

Simply Java Chapter 3: Class design and implementation

executes the state of the program looks like Figure 3.4

G. Putting it all together - finally!

All you need to do to finish the project is to add one line to the Applet.

That’s it! You are done! Now you can compile and run the Applet. Do that now (don’t
forget to change the main class back to ATM_Applet -- Project/Set Project Main

Figure 3.4

 The state of the program after line 6 in Code Example 3.11 execute
The only differences are the value of the balance in account1 and the value of currentAccount

in theBank, which now points to account3 instead of account1.

Code Example 3.12

1 public class ATM_Applet extends java.applet.Applet {
2 Bank theBank = new Bank();
3

 Alteration to Applet code.
To declare the Bank variable, theBank, add this line at the beginning of the ATM_Applet class.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 60

Class...). Make sure it really does keep track of the three balances correctly. You will
notice that everyone starts out with a balance of 0, but it still allows them to withdraw
money.

Could you arrange for them to start with some other balance besides zero?

This turns out to be easy, but not at all obvious. The initial default value for every

instance variable is 0, but you can set it to something else as shown in Code Example
3.13. Do that now and rerun your program.

Assuming you’ve made that program run, good work! You have done some of the most
difficult programming you will ever do; working in a new language in a new IDE is
incredibly difficult. There are so many details and everything is unfamiliar so even the
simplest problem can seem overwhelming. It only gets easier from here. With practice
everything you did today will become easy and effortless, and in a few weeks you’ll be
amazed that this ever seemed difficult. That’s how expertise works; you learn something
and it seems simple. Then it’s hard to understand why everyone else can’t do it. Welcome
to Java programming.

H. Conclusion

Programming is always an iterative process. No one writes finished programs from
scratch in one go. Rather it is a process of successive approximation. There are two
compelling reasons for starting with a prototype which does almost nothing and then
adding functionality after each simpler program works. First, it allows the programmer to
focus on one part of the program at a time, and thus reduces cognitive overhead during
the design and implementation phase. This is also an advantage of writing and testing
classes one at a time. Second, it makes the task of debugging much easier. Debugging is

Code Example 3.13

1 public class Account {
2 String name;
3 int balance=1000000; // Every Account starts with $1,000,000!
4

 Alteration to Code Example 3.1.
To set the initial balance for every account to $1,000,000. Change is in bold.

CS231 Spring 5 Page 61

Simply Java Chapter 3: Class design and implementation

the hardest part of programming for all levels of programmers; it can be baffling,
frustrating and exhausting. Stepwise implementation makes it much easier to find bugs
when they occur, simply because a smaller part of the program is new at any time.

This chapter introduced classes; their design, implementation, testing, and incorporation
into a larger program. It included various language constructs and components, including:
variables, the assignment statement, declarations, instantiation, accessors, parameters,
and return values along with the AWT Components, Button, and TextField. These
various elements were presented rather telegraphically, with most of the detail omitted. A
more complete and careful discussion of these topics may be found later on. Here the
emphasis is on constructing a working program to experiment with to get a feel for both
the Java language and the process of programming.

If you new to programming and/or Java you may be feeling a bit confused. You probably
have many questions about what you’ve just done, and a number of concepts you are very
unsure about. If so, good! There were too many concepts and details to describe or
understand all at once. But, at least you have seen the process of constructing a working
Applet with several classes and a GUI. That’s a lot (And it’s most of what programming is
about.). It usually takes about 3 or 4 weeks for undergraduates in an introductory class to
be able to do this sort of program. Oh, and then there was all the detail of using Netbeans
to build the GUI and compile/execute the program. The next chapters will fill in the
detail, and if it answers questions you have in the back of your mind, the details will be
easier to understand and remember.

The next chapter will introduce Graphics, Color and software reuse techniques through
the development of another example. After that comes a detailed explanation of many of
the concepts and programming features glossed over here. Then some more elaborate
(and interesting) examples will be undertaken.

I. End of chapter material

i) What could go wrong?
In "When the user hits enter, get the withdrawal amount" on page 44, if the contents of
the TextField is not an int, an Exception will be thrown.

In "GUI implementation" on page 53, it is very easy to get confused over which Button is
which, and which ActionPerformed() should send what message. If something goes
wrong with the account selection that would be the first place to look.

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 62

i) New terms in this chapter
default value - the value you get if you don't do anything. Instance variables are assigned

zero by default when they are created. If you want to initialize them to something
else you may (e.g. int x=17;). 57

GUI - graphical user interface 39
recursive definition -- a definition that uses the thing being defined 41
variable - memory to store one value of a particular type 42

ii) Review questions
 3.1 How do you create objects?
 3.2 What is the difference between a class and an object?
 3.3 When you declare a variable, you must specify its type and name (in that order).

What are you allowed to call variables? I.e. what rules must variable name (indeed all
Java identifiers) adhere to?

 3.4 Here are two legal names: something, and Something. These are different, because
Java is case sensitive. If you are following the convention for naming classes and
objects which of these is the name of a class and which the name of an object?

 3.5 Where is information stored in Java program?
 3.6 How do you change the value of a variable?
 3.7 What is the difference between the types int and String?
 3.8 What are the three attributes of every variable?
 3.9 What are parameters used for?
 3.10 What are imports for?
 3.11 Where do parameters go?
 3.12 Is doSomething() a variable name or a method? How can you tell?
 3.13 In anything.everything(something), you can tell by the context what anything,

something and everything are. What are these three things? The answers are
message, object, and parameter, but which is which?

 3.14 Recall that computing is always information processing; in the ATM problem
description, what information is processed, input, or output, for each possible user
action?

iii) Programming exercises
 3.15 The instructions omitted the labels above and below the TextField. Add them.
 3.16 Your finished Applet was not very user friendly. When a customer withdrew cash,

and wanted to see the new balance, they had to push the display button again. It is
simple (i.e. one line) to automatically display the new balance every time a
withdrawal is made. Do so. Hint: write a public void display() method in your Applet

CS231 Spring 5 Page 63

Simply Java Chapter 3: Class design and implementation

(that does exactly what the display button does) and use it in actionPerformed for the
TextField right after you do the withdrawal (i.e. say display()).

 3.17 After you do the previous exercise, you will discover a small inconvenience. If you
want to withdraw the same amount repeatedly from the same account, you have to
keep removing the balance and reentering the amount before you can withdraw again.
Improve the usability of your interface as follows. After a withdrawal is made, move
the cursor to the TextField and select the text so the user can simply copy the amount
to be withdrawn (ctrl-c) and then paste and hit enter over and over. Add the code to
actionPerformed for the TextField (right after the display() from the previous
exercise). If the name of your TextField was theTF, the code would be:

theTF.requestFocus();
theTF.selectAll();

Simply Java Chapter 3: Class design and implementation

CS231 Spring 5 Page 64

CS231 Spring 5 Page 65

Simply Java Chapter 4: Graphics and Inheritance

Chapter 4: Graphics and Inheritance

"One is not likely to achieve understanding from the explanation of another."
Takuan Soho

A. Introduction

This chapter will give you more exposure to and practice with writing classes in Java. It
will also illustrate how to do simple graphics and introduce inheritance, a powerful
feature of object oriented programming. Like the last chapter, it will not present all the
details of the constructs used; that will be delayed until the next chapter. For now, try to
become familiar with the process of thinking a problem through, coming up with an
elegant design for a solution, then implementing and testing it -- those are the important
lessons that will carry over into other programming languages and possibly even other
areas. To learn to program, you must practice, reading about it is not good enough (as the
Takuan quote implies).

i) A description of the task
Your task in this chapter will be to draw two eyes on the screen. For simplicity you need
only draw the iris and pupil. Make the iris the exact same color as yours. The distance
between the two eyes and the size of the pupil relative to the iris should be adjustable by
the user.

ii) Creating a prototype
In the previous chapter you were introduced to the techniques of: a) Building a prototype
then gradually adding functionality, and b) Sketching the GUI, then creating and testing it
before writing any other code. Do that now. First, create a new project in Netbeans
(consult with "Getting started with Netbeans and the greetings program" on page 327 if
you’ve forgotten how). Add a GUI Applet called EyeApplet. Add and connect however
many Buttons you will need. Compile and run your project, testing to make sure
everything works so far (i.e. that all the Buttons invoke the correct actionPerformed()
method, see "Adding, connecting and testing a Button" on page 331). Now you are in a
position to try out the various Graphics commands as you work through the chapter.

iii) Object Oriented Design -- choosing classes to implement
A decision that you must make early in the design of a program to solve some problem is
what classes you will use in the solution. Since your task is to draw two eyes on the

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 66

screen, a natural candidate for a class would be Eye. Since an Eye consists of an iris and a
pupil, two circles filled with different colors; Iris and Pupil are also candidate classes.
How many classes make sense in a particular context is less than perfectly defined. For
now, let’s assume you will need an Eye class, and put off the decision on Iris and Pupil
until you know a little more. Before designing the Eye class, there are several facts about
Graphics and Color in Java that you need to know. Often in designing a class you must
do some experiments, play with the elements involved, and learn about the related classes
Java provides, before you know enough to make informed decisions about the details of
the class you are writing. These next several sections will illustrate that process; then we
will return to the Eye class; and once the Eye class is done, so is our task!

B. The Graphics class

i) The Graphics context
Java provides the java.awt.Graphics class to draw on the screen. The Sun API
documentation says it well: "A Graphics object encapsulates state information needed for
the basic rendering operations that Java supports.". In other words, to draw on the screen
you need to have a Graphics context in which to do so. You have already seen how to
draw on the screen in an Applet by including a public void paint(Graphics) method (on
page 32). This section will provide a few more details.

ii) Inheritance, Components and public void paint(java.awt.Graphics)
When you write a public void paint(Graphics) method in your EyeApplet, it overrides
the default paint() method in Applet. That sentence requires a bit of explanation. Look
at the heading of the EyeApplet class definition (in the EyeApplet.java file). The first line
of code is: public class EyeApplet extends java.applet.Applet; thus, the class is
named EyeApplet, it is public and it is a subclass of java.applet.Applet (in other words, it
extends java.applet.Applet). When you extend a class, instances of the subclass inherit all
the functionality of the superclass. To add functionality, you simply add methods. To
change the behavior of a method in the superclass, you write a subclass method with the
same signature that does something different. Because EyeApplet extends Component
(actually it extends Applet which extends Panel, which extends Container, which extends
Component, but never mind right now), it automatically inherits a paint method (which
does very little). If you want to paint your Applet differently (by drawing a circle or
whatever on the screen) you write a public void paint(java.awt.Graphics) method in
your subclass, and then that is executed instead. You will see examples of adding and
modifying functionality in the FilledCircle class, below.

CS231 Spring 5 Page 67

Simply Java Chapter 4: Graphics and Inheritance

iii) Basics of graphics in Java

a) The coordinate system
From the perspective of a Java graphics context, the drawable area is a rectangle of dots
numbered from left to right and top to bottom. The dots are called picture elements or
pixels. The pixel numbered (0,0) is in the upper left corner.

When you create a GUI Applet in Netbeans it automatically generates an HTML file for a
browser to use in determining how to display it. Assuming you named your Applet
EyeApplet, the HTML file is called EyeApplet.html. It is stored in the same directory as
your source files. It contains the line:
<APPLET code="EyeApplet.class" width=350 height=200></APPLET>

This specifies the width and height of the graphics context (in pixels) within the frame of
the Applet. This will be illustrated in the next section. If you want your Applet to be a
different size, simply change the 350 and 200 (use the Netbeans editor!).

b) A few Graphics methods

The only method you need to draw an eye is drawOval(), but that will be easier to
understand if first you know how drawRect() works. The drawRect() method has four
parameters, all ints. The first two specify the upper left corner of the rectangle; the third
and fourth, its width and height. In each pair, the first is horizontal, the second is vertical.
Thus drawRect(x,y,width,ht) will draw a rectangle whose upper left corner is at (x,y),
whose width is width, and whose height is ht.

The drawOval() method is similar. The four parameters are identical, specifying a
rectangle, exactly as in drawRect(); the oval is inscribed in the specified rectangle.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 68

The drawLine() method also has four parameters; the first two specify the coordinates of
one end of the line, the second two, the other. See Code Example 4.1 for an illustration.

Code Example 4.1

1 public void paint(java.awt.Graphics g) {
2 g.drawRect(25,25,100,100);
3 g.drawOval(25,25,100,100);
4 g.drawLine(0,0,350,200);
5 g.drawString("g.drawRect(25,25,100,100);", 20, 150);
6 g.drawString("g.drawOval(25,25,100,100);", 20, 165);
7 g.drawString("g.drawLine(0,0,350,200);", 20, 180);
8 }

 A paint() method - see Figure 4.1 for its result.
Line 2: Draws a square with sides 100 pixels long, upper left corner at (25,25)
Line 3: Draws a circle centered in it, i.e. centered at (75,75), not (25,25).
Line 4: Draws a line from one corner of the graphics context to the other.
Lines 5-7: Draws Strings representing the previous 3 messages on the screen.

CS231 Spring 5 Page 69

Simply Java Chapter 4: Graphics and Inheritance

Notice that if we were hoping for a circle centered at (25,25) we did not get what we
wanted. We will have to take this into account in writing the graphical display method for
the Circle class.

Figure 4.1

9

 The result of the paint() method in Code Example 4.1
The coordinates of the corners of the graphics context and the square are indicated.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 70

C. The Circle class -- design and implementation
Circles are used to represent many things in GUIs. In a simulation circles might represent
molecules; in a game, balls; on a map, populations in cities, or incidence of infectious
disease.

As you have just seen, you can draw a circle in a graphics context by using
g.drawOval(int, int, int, int). But, if you were writing a program that displayed
many circles, or if the circles moved around the screen (like the balls in a billiards game),
or changed sizes (like graphics representing levels of infection), you wouldn’t want to
keep finding and changing the appropriate drawOval() code. If you tried, it would take a
lot of careful attention to avoid changing the wrong one. A better solution is to hide the
information about a particular circle, namely where and how big it is, inside an object.
Then when you have multiple circles, you can just deal with them as Circles and let the
details of where they are right now and how to draw them be handled by the Circle class.
Additionally, if you need to change how they are drawn, there is only one piece of
drawing code to change instead of numerous copies of it. Thus, you can avoid complexity
and bugs at the same time. What a deal!

As with any class, in designing the Circle class, you must decide: 1) what information it
will contain, and 2) what actions it will support, including how it will be displayed and
tested.

i) Circle class design

a) State - What information completely describes the state of a circle?
To completely describe a circle you must specify its center and its radius; that’s it. So we
will need three variables; one for its radius and two for its position. For simplicity, and
since the screen is made of discrete pixels, these can all be whole numbers, ints. For now.
When we use Circle to display molecules later, it will turn out to be crucial for their
positions to be able to be intermediate between pixels.

b) Action - What must a Circle do?

We will need accessors for all our variables, so that we can discover and/or change the
position or size of a Circle. We will also need methods to display a Circle, both for
debugging and graphically.

CS231 Spring 5 Page 71

Simply Java Chapter 4: Graphics and Inheritance

ii) Converting the design to Java code

a) Creating the Circle class
Create a Circle class (see "Creating a class with a test driver" on page 340 to refresh your
memory, if needed).

b) Variables

Perhaps you already know how to declare the three variables? That would be:
int x;
int y;
int radius;

c) Accessors

These are just like the accessors for Account (See Code Example 3.2 on page 48) except
the names of the variables are changed. Look back at that example and try to write the
accessors for x, before looking at them on the next page.

d) toString()

Java has a special method that is used almost exclusively for debugging. It is called
toString(), and its signature is: public String toString(). As the name implies (once
you are familiar with colloquial Java-speak) it converts an object to a String. While you
are testing your classes (or debugging in general) you sometimes need to know what
information is in an object, whether it contains the information you expect. If you have an
object called anyObject, you can always find out what’s inside by:
System.out.println(anyObject);

Code Example 4.2

1 public int getX() {return x;}
2 public int getY() {return y;}
3 public int getRadius() {return radius;}
4
5 public void setX(int nuX) {x = nuX;}
6 public void setY(int nuY) {y = nuY;}
7 public void setRadius(int nuRadius) {radius = nuRadius;}

 Accessors for the Circle class

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 72

You don’t need to type .toString() because in the context of a System.out.println, Java
automatically adds it for you (although you may type it if you want).

You can write any toString() method that you choose, so long as the signature matches.
Here’s a toString() for the Circle class that is a bit verbose. Why it is written this
particular way will become obvious in the next chapter:

iii) Testing your code
That’s enough code to test. Create a Circle and check that all the methods work. To do
that, after you instantiate the Circle, display it, then change all the variables and display it
again. Since toString uses getX(), getY() and getRadius(), by doing that you have used

Code Example 4.3

1 public String toString() {
2 String returnMe = "I am a Circle: ";
3 returnMe += "\tx=" + getX();
4 returnMe += "\ty=" + getY();
5 returnMe += "\tradius=" + getRadius();
6 return returnMe;
7 } // toString()

 toString() for the Circle class
Line 2: Declare the String variable to return; set it to "I am a Circle: "
Line 3: Paste a tab (\t) onto it, followed by "x=" and the value of x.
Line 6: Return that whole String as the value of toString()

CS231 Spring 5 Page 73

Simply Java Chapter 4: Graphics and Inheritance

all the methods. See Code Example 4.4 for how the code might look. Type and run this

test program (if you made mistakes, debug your typing). Then, since you know the Circle
class can keep track of and change its variables correctly you are ready to add the
graphical display.

D. Displaying a Circle graphically

To display a Circle graphically requires a method that draws the right sized circle in the
correct location. It seems this should only take one line of code. Something like:
g.drawOval(x,y,width,ht);

But, what values should we use for x, y, width and ht? And where does the graphics
context, g, come from?

i) public void paint(java.awt.Graphics)
A Circle knows its location and size (the location of the center is in its x and y variables
and its size is in its radius variable). There is no way a Circle should know anything about
graphics contexts, so that is best provided from the outside, by whatever method asks the
Circle to display itself. This is what parameters are used for, to pass information to a
method. The Applet was displayed graphically by a method called paint(); to keep down
the cognitive overhead, we will use the same name for the method that displays a Circle

Code Example 4.4

1 public static void main(String[] args) {
2 Circle aCircle = new Circle();
3 System.out.println("before" + aCircle);
4 aCircle.setX(123);
5 aCircle.setY(17);
6 aCircle.setRadius(34);
7 System.out.println("after" + aCircle);
8}

 Testing the first prototype Circle class.
Line 2: Instantiate a Circle called aCircle
Line 3: Display it.
Lines 4-6: Set all the variables.
Line 7: See if they changed.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 74

graphically. So, perhaps all we need is: g.drawOval(x,y,radius,radius); as in Code
Example 4.5).

ii) Testing the paint method
Add the paint method from Code Example 4.5 to your Circle class and test it by
modifying your EyeApplet to create a Circle, set its x, y, and radius to 100, and display it
graphically in paint() (see Code Example 4.6). Unfortunately this draws the circle that

would fit inside a square of size radius, whose upper left corner is at (x,y). That has two

Code Example 4.5

1 public void paint(java.awt.Graphics g) {
2 g.drawOval(x,y,radius,radius);
3 }

 A first try at a paint method for Circle.
This method has two logic errors; can you find them?

Code Example 4.6

1 public class EyeApplet extends java.applet.Applet {
2 Circle aCircle = new Circle();
3
4 /** Initializes the applet EyeApplet */
5 public void init() {
6 initComponents();
7
8 aCircle.setX(100);
9 aCircle.setY(100);
10 aCircle.setRadius(100);
11 }
12
13 public void paint(java.awt.Graphics g) {
14 aCircle.paint(g);
15 }
16

 Creating and displaying a Circle graphically.
Lines 8-10: set the variables in aCircle to 100.
Line 14: to display the Applet, display aCircle; note that we are sending the graphics context

(that came into paint() as the paramter, g) as a parameter.

CS231 Spring 5 Page 75

Simply Java Chapter 4: Graphics and Inheritance

problems: 1) it is centered at (x+radius/2, y+radius/2), and, 2) its diameter is the radius of
the Circle (To understand this, draw yourself a picture labelled with coordinates.

Problem Solving Technique

Draw a picture.

By drawing a picture, you can engage your visual-spatial processing system.
Although people tend to take it for granted, the ordinary ability to walk through a
crowd involves a feat of information processing. Your visual-spatial processor is
more powerful than any computer on the planet, but so long as you are stuck in
linguistic space it is idle. Drawing a picture can activate it. And when you look
back at the picture you will remember what you were thinking.

Not interested in drawing right now? Then, it’s time to put this down and do something
else. You can’t, can’t, cannot, program without understanding. It’s hopeless. Seriously.
So, either take the time, spend the effort to understand it, or, do something else! No sense
wasting your time.). That second problem is very easy to fix, simply pass radius*2
instead of radius for the width and height to drawOval() (see Code Example 4.7). Now

the size is correct, but the center is at (x+radius,y+radius), instead of (x,y). How could
you fix this? The simplest way is just to subtract the radius from x and y in the

Code Example 4.7

1 public void paint(java.awt.Graphics g) {
2 g.drawOval(x,y,radius*2,radius*2);
3 }

 A second try at a paint method for Circle.
This method gets the size right, but the circle is still in the wrong place.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 76

parameters you send to drawOval, as seen in Code Example 4.8. Modify your code.

Execute it to verify that the circle is displayed at the appropriate place.

iii) More than one Circle
Now that you have a working Circle class, you can create and display as many Circles as
you want. Add another Circle as shown in Code Example 4.9. Execute it to make sure it
is working properly; the circles should be concentric. Add another, intersecting Circle to
make sure you understand the procedure (don’t forget to add a line in paint() to display
the third one!). Notice that you can add and display as many Circles as you want without
ever looking back at the Circle class code. This is a huge advantage of programing with
objects; once a class is written, you can forget the details inside it.

Code Example 4.8

1 public void paint(java.awt.Graphics g) {
2 g.drawOval(x-radius,y-radius,radius*2,radius*2);
3 }

 A correct paint method for Circle.
Draws a circle whose radius is radius, centered at (x,y). In the context of a particular Circle, x,

y, and radius are variables specifying the state of that Circle.

CS231 Spring 5 Page 77

Simply Java Chapter 4: Graphics and Inheritance

You are almost ready to design and implement the Eye class, as soon as you know a bit
about color in Java.

E. The Color class

i) Setting the color of the Graphics context
A graphics context has a number of state variables, including the current color. The
default color is black. You can change it with the accessor setColor(Color); i.e. you set
the color of a Graphics object by sending it a setColor() message with a Color as the
parameter. Just as you set the balance of an Account by sending it the setBalance()
message with an int as the parameter; or the radius of a Circle using setRadius().

Code Example 4.9

1 public class EyeApplet extends java.applet.Applet {
2 Circle aCircle = new Circle();
3 Circle bCircle = new Circle();
4
5 /** Initializes the applet EyeApplet */
6 public void init() {
7 initComponents();
8
9 aCircle.setX(100);
10 aCircle.setY(100);
11 aCircle.setRadius(100);
12 bCircle.setX(100);
13 bCircle.setY(100);
14 bCircle.setRadius(50);
15 }
16
17 public void paint(java.awt.Graphics g) {
18 aCircle.paint(g);
19 bCircle.paint(g);
20 }

 Adding a second concentric Circle.
Changes to Code Example 4.6 are in bold. If you wanted a non-concentric Circle, change the

parameters in setX() and setY() for bCircle.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 78

ii) Built in Colors
The Color class has about a dozen colors predefined. To set the color to red, you would
say: g.setColor(java.awt.Color.RED); Add that line between lines 18 and 19 in Code
Example 4.9 and execute the Applet. Notice that only the second circle is red; if you
move the setColor() before line 18, then both Circles will be red.

iii) Creating your own Colors
There are millions of colors possible in Java. You can create any of them by saying:
java.awt.Color myColor = new java.awt.Color(red, green, blue);

The three int parameters to the Color constructor set the intensities of red, green, and
blue. All three must have values in the range, 0 to 255.

Exactly how many colors are available? You can calculate this from the fact that
there are three parameters, each of which can take on 256 different values. It’s
very much like the analysis in "Problem Solving Principle #1 - Build a prototype"
on page 7.

a) RGB color model
Java has two color models, but the simpler is the RGB model. RGB stands for red-green-
blue. The color of each pixel is determined by the amount of illumination in those three
colors. Any combination of values for red, green and blue is legal. To get pure red, you
say new java.awt.Color(255, 0, 0); thus passing 255, 0, and 0, as the parameters to
new java.awt.Color(); 255 for red (i.e. all the way on), 0 for green and blue (i.e. all the
way off). Purple is a mixture of red and blue. So, for bright purple you would pass
(255,0,255); for dark purple, perhaps (50,0,50).

b) The difference between pigment and light

The RGB values set the intensity of light emitted in each color. You are probably more
used to mixing pigments than light. Light and pigment are not identical. If you mix blue
paint with red paint, you get purple. If you then add yellow you get muddy brown (or
possibly even black). When you mix red light with blue light you also get purple; but if
you then add green, you get white! A combination of all colors of light yields white light.
Think of a prism. It breaks white light into its constituents. If there is no pigment, white
paper remains white; if there is no light, everything is black. So
new java.awt.Color(255,255,255) is white, new java.awt.Color(0,0,0) is black.

CS231 Spring 5 Page 79

Simply Java Chapter 4: Graphics and Inheritance

F. The Eye class: design and implementation

i) Designing an Eye class
For your purposes here, an Eye is two concentric Circles, the larger (the iris) filled with
the color of your eyes (some shade of brown, blue, or green), the smaller (the pupil) filled
with black. If you wanted two unfilled black circles, the Eye class could have two Circle
variables and you’d be almost done already.

For the user interface, you must allow the user to move at least one eye horizontally, and
adjust the size of the pupils. The simplest way to handle this is with two Buttons to move
one eye right and left; and two more to grow and shrink the pupils (if your interface uses
some other scheme, that’s fine). Thus, you will need methods to change the size and
location of an Eye. Fortunately these will be very easy. Assume an Eye had two Circle
variables. When the user wanted to shrink the pupils, a shrink() message would be sent
to the Eye. The shrink() method could then reduce the size of the pupil Circle using
getRadius() and setRadius() (i.e. iris.setRadius(iris.getRadius()-3)). Similarly, the
moveRight() method could adjust the locations of both Circles using getX() and setX().

The Circle class does almost what you need already. Two things need to be modified.
Instead of drawing a circle in black, you want it to fill the same circle in a particular
color. One way to accomplish this would be to modify the Circle class. You could change
drawOval() to fillOval() in paint(), add a Color variable and use it to set the color of
the graphics context before you fill the circle. But, then if you wanted to be able to draw
unfilled circles you’d need to remodify the Circle class. Instead, we will extend the Circle
class. That way, you won’t have to change the Circle class and code reuse can be
illustrated by subclassing.

ii) class FilledCircle extends Circle
As mentioned above, when you extend a class, the subclass inherits the data and methods
of the superclass. Thus FilledCircle can use x, y, and radius without redeclaring them.
Plus, you can add additional methods to add functionality, and override existing methods
to change functionality.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 80

a) Design

• Variables

FilledCircle inherits x, y, and radius from Circle. It needs one additional variable, to keep
track of its color.

• Methods

There must be some way to set the color of a FilledCircle, so it will need a setColor()
accessor. The paint() method must be modified to fill the circle in that color instead of
just drawing the outline of the circle.

b) Implementation

• Create a FilledCircle class

If you need to consult with "Creating a class" on page 339 to refresh your memory, but,
pay attention this time! There’s no sense being tethered to the appendix for longer than
necessary.

• Add a color variable

Here’s how to declare a variable of type Color called myColor:
 protected java.awt.Color myColor = new java.awt.Color(100,0,100);
This line autoinitializes myColor to a medium purple. This default color will help in
debugging; anytime you see it, you will know that you forgot to set the color for this
FilledCircle.

Some people don’t like to type, or look at, "java.awt." over and over. If you would prefer
to just type:
protected Color myColor = new Color(100,0,100);

See Code Example 4.11 for a technique to allow this.

• Add the accessor to set the color of the FilledCircle

To be able to change the color of a FilledCircle, there must be an accessor. The standard
name is setColor() and its form is identical with the other accessors you’ve seen; see
Code Example 4.10. Before long accessors like this will be second nature. For now,
realize that there is one parameter of type Color, named c (line 7, java.awt.Color c); and

CS231 Spring 5 Page 81

Simply Java Chapter 4: Graphics and Inheritance

whatever value is passed through that parameter is stored in the instance variable named
myColor (line 8, myColor = c;).

• Override paint()

The heading of paint() is public void paint(java.awt.Graphics g). Thus, the
parameter is of type Graphics and is named g locally (i.e. in the paint() method). The
body of the method must first set the Graphics color to the color of this particular
FilledCircle, then draw the filled circle. See Code Example 4.10.

Code Example 4.10

1 public class FilledCircle extends Circle {
2 protected java.awt.Color myColor = new java.awt.Color(100,0,100);
3
4 /** Creates a new instance of FilledCircle */
5 public FilledCircle() {}
6
7 public void setColor(java.awt.Color c) {
8 myColor = c;
9 }
10
11 public void paint(java.awt.Graphics g) {
12 g.setColor(myColor);
13 g.fillOval(x-radius, y-radius, radius*2, radius*2);
14 }
15}

 The FilledCircle class.
Line 2: Declare a Color named myColor and initialize it to medium purple
Lines 7-9: Accessor to set the color of a FilledCircle
Lines 11-14: Paint the FilledCircle by setting the graphics color, then fillOval()

See Code Example 4.11 for a way to avoid typing java.awt. over and over.

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 82

Code Example 4.11

1 import java.awt.*;
2 public class FilledCircle extends Circle {
3 protected Color myColor = new Color(100,0,100);
4
5 /** Creates a new instance of FilledCircle */
6 public FilledCircle() {}
7
8 public void setColor(Color c) {
9 myColor = c;
10 }
11
12 public void paint(Graphics g) {
13 g.setColor(myColor);
14 g.fillOval(x-radius, y-radius, radius*2, radius*2);
15 }
16}

 Simplified FilledCircle class using import.
Line 1: This import statement allows you to skip typing java.awt. before Color and Graphics.

Compare to Code Example 4.10.

CS231 Spring 5 Page 83

Simply Java Chapter 4: Graphics and Inheritance

iii) Testing FilledCircle
Modify your existing Applet to test FilledCircle. It will be enough to simply change the
Circles to FilledCircles and set the color of the smaller one to black. What will it display
if it is working correctly? See Code Example 4.12 for the necessary changes.

iv) The Eye class
Having built and tested a GUI Applet and a FilledCircle class, most of the work of
building the Eye class is finished. Create an Eye class and add the following variables
and methods.

a) Variables
 An Eye has an iris and a pupil; these are both FilledCircles. Thus:

Code Example 4.12

1 public class EyeApplet extends java.applet.Applet {
2 FilledCircle aCircle = new FilledCircle();
3 FilledCircle bCircle = new FilledCircle();
4
5 /** Initializes the applet EyeApplet */
6 public void init() {
7 initComponents();
8
9 aCircle.setX(100);
10 aCircle.setY(100);
11 aCircle.setRadius(100);
12 bCircle.setX(100);
13 bCircle.setY(100);
14 bCircle.setRadius(50);
15 bCircle.setColor(java.awt.Color.BLACK);
16 }
17
18 public void paint(java.awt.Graphics g) {
19 aCircle.paint(g);
20 bCircle.paint(g);
21 }

 Test code for FilledCircle.
Changes from Code Example 4.9 are in bold.
Lines 2-3: Declare, instantiate, and store FilledCircles instead of Circles.
Line 15: Set the smaller’s color to black so it won’t be purple!

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 84

 FilledCircle iris = new FilledCircle();
 FilledCircle pupil = new FilledCircle();

b) Methods

Because an Eye is composed of two FilledCircles, most Eye methods will simply send
the appropriate messages to those FilledCircles.

• move left and move right

To move an Eye left you must move both of its FilledCircles left, so the moveLeft
method would simply set x in each to a slightly smaller number; see Code Example 4.13.

The moveRight() method would be similar, except increasing x for each.

• shrink pupil and grow pupil

To shrink the pupil you can simply reduce the radius of the pupil FilledCircle; see Code
Example 4.14. The growPupil() method is nearly identical. After you add these methods

to the Eye class, go back to the actionPerfomed() method for the shrink and grow

Code Example 4.13

1 public void moveLeft() {
2 iris.setX(iris.getX()-2);
3 pupil.setX(iris.getX());
4 }

moveLeft() for Eye.
Line 2: Set the x coordinate to 2 less than it was.
Line 3: Having reset iris.x, set pupil.x to the same thing.

Code Example 4.14

1 public void shrinkPupil() {
2 pupil.setRadius(pupil.getRadius() - 2);
3 }

shrinkPupil() for Eye.
Line 2: Set the radius to 2 less than it was.

CS231 Spring 5 Page 85

Simply Java Chapter 4: Graphics and Inheritance

Buttons, and modify them to send those messages. There are two things you must make
sure of in doing this:
1. There must be an Eye variable declared before you can send the message to it. Every

message has the form someObject.someMessage(); -- see "The message statement" on
page 96.

2. To change what is displayed, you must invoke paint(Graphics) and to do that you
must send the repaint() message. The details of this will be explained in a later
chapter. For now, just use the code in Code Example 4.15

• public void paint()

To display an Eye you must display both FilledCircles, first the iris, then the pupil (since
if you do it in the other order, the pupil will be invisible) see Code Example 4.16. That’s

all there is to it.

That’s all the methods we need (Or is it? Check the design to see if we did everything we
planned to. Look back at Code Example 4.12, which tested the FilledCircle class; did it
send any messages besides paint() to the FilledCircles?), so it’s time to test.

Code Example 4.15

1 private void growButtonActionPerformed(java.awt.event.ActionEvent evt) {
2 rightEye.growPupil();
3 repaint();
4 }

actionPerformed() for growButton
Line 2: Send the rightEye the growPupil message.
Line 3: Repaint the Applet so you can see the new pupil size -- don’t forget this!!

Code Example 4.16

1 public void paint(java.awt.Graphics g) {
2 iris.paint(g);
3 pupil.paint(g);
4 }

paint() for Eye
See the simplicity of composition?

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 86

c) Testing

Modify your Applet to create and display one Eye, as in Code Example 4.17. Run it.

Once you find and eliminate all the typing errors, you should notice that there’s no sign of
the Eye. Why not?

d) Debugging

There are many possible reasons. Maybe it’s never being sent paint(). Maybe it is
painted in white. Maybe it’s being drawn off the screen. Maybe it is so small you can’t see
it. Maybe something else is being drawn on top of it. The job of the programmer, at this
juncture, is to determine the cause of the problem and fix it. Assuming it is one of the
reasons listed above, how could you go about determining which it is? The answer is,
use the scientific method. Design and carry out experiments to verify or eliminate each of
those hypothetical bugs. Until you determine what is causing the problem, it will be
difficult to fix.

You might start by making the Applet window bigger; maximize it and see if the Eye
appears. Or, you might push the "grow pupil Button"; do it several times. This assumes
that you have modified the event handling code for that Button so that it sends the
growPupil() method to the Eye. If you haven’t added that code yet, do so now.

Code Example 4.17

1 public class EyeApplet extends java.applet.Applet {
2 Eye rightEye = new Eye();
3
4 /** Initializes the applet EyeApplet */
5 public void init() {
6 initComponents();
7 }
8
9 public void paint(java.awt.Graphics g) {
10 rightEye.paint(g);
11 }

 Test code for Eye.
Testing code for Eye. Note that unlike Code Example 4.12 there is only one line in init().

What did init contain in Code Example 4.12?

CS231 Spring 5 Page 87

Simply Java Chapter 4: Graphics and Inheritance

In my Applet, after I pushed the grow Button several times, I was surprised to see a
quarter of a purplish circle expanding from the upper left corner. Having seen this before,
I immediately realized that the reason I didn’t see anything at first was that the radius, x,
and y, were all zero. Do you know why? The default initial value of instance variables is
zero (see "Putting it all together - finally!" on page 59).

If you compare Code Example 4.12 (the Applet to test FilledCircle) and Code Example
4.17 (to test Eye), you will notice that init() in the former sets x, y, and radius for both
FilledCircles and sets the color of the smaller to black; in the latter it does not. Somehow
we must specify the location of the Eye and make its pupil black.

There are a number of ways we might set the initial size and location of an Eye. For now,
simply add setX(), setY() and setRadius() methods to Eye, and send these messages to
the Eyes in init(). To setX() for an Eye, all you need to do is send setX() to both the
iris and the pupil. For setRadius(), send setRadius() to both, but make the radius of the
pupil smaller.

A maxim of object programming is for classes to know the minimum. It makes sense for
the Applet to control the location of the Eye, and possibly the size. Nevertheless, every
Eye will have a black pupil, so the right place to set the color of the pupil is in Eye, not
Applet.

1You may have noticed this code (written by Netbeans) in Eye.java.
1 /** Creates a new instance of Eye */
2 public Eye() {
3 }

This looks like a method without a return type, with the same name as the class. It is
called the default constructor, and is invoked when you say new Eye(). If there is any
initialization code for instances of a class, it goes in the default constructor. So that is

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 88

where the code to set the color of the pupil to black goes. See Code Example 4.17 for the

code you should add. Do so, then run your program again. If you’ve made no mistakes, it
will display an Eye with a black pupil. Chances are you have made one or more mistakes.
If so, figure out what’s gone wrong. Don’t panic! Just pick up the balls and keep
practicing. Try out the buttons. Do they work? Did you write code for each one?

G. Assembling a working Eyes program
Now that you have a working Eye class and a working Applet with buttons to adjust it,
accomplishing the task of displaying two of Eyes is fairly trivial. Probably you already
know what needs to be done. There are four things, all in the EyeApplet class.
1. Declare the second Eye (at the top)
2. Set the size and position of the second Eye (in init())
3. Display the second Eye (in paint())
4. Resize both pupils (in actionPerformed() for the shrink and grow Buttons).
These should all be simple since the code is already there for rightEye.

Code Example 4.18

1 /** Creates a new instance of Eye */
2 public Eye() {
3 pupil.setColor(java.awt.Color.BLACK);
4 }
5
6 public void setRadius(int r) {
7 iris.setRadius(r);
8 pupil.setRadius(r/2);
9 }
10
11 public void setX(int x) {
12 iris.setX(x);
13 pupil.setX(x);
14 }

 Additional code for Eye.
Line 3: Sets the color of the pupil to black (so it won’t be purple).
Lines 6-9: To set the radius of the Eye, set the radius of the iris to the parameter, set the radius

of the pupil to half that.
Lines 11-14: To set x for the Eye, setX() for both its iris and pupil to the parameter.

CS231 Spring 5 Page 89

Simply Java Chapter 4: Graphics and Inheritance

Make those changes, and test your code. The only thing remaining now is to make the
Eye color match yours. You could experiment with changing the RGB parameters on line
3 of Code Example 4.11, but that means you’d have to recompile each time. A more
efficient (and fun) technique is to use Netbean’s Color Editor (see Appendix ?? Color
Editor -- In the Form Editor, select a button, then in Properties click the ... to the right of
background, click RGB and slide the sliders).

H. Conclusion

This chapter developed a program to display two eyes the color of the programmer’s in an
Applet. It did so by designing and implementing a Circle class, extending that to a
FilledCircle, and finally building an Eye class that was composed of two FilledCircles. It
thus illustrated both mechanisms for code reuse: inheritance and composition. It also
illustrated the use of simple Java Graphics and Color plus walked through the process of
developing a program incrementally.

A novice programmer would have spent roughly 3-6 hours to work through this chapter;
there are so many details that needed to be correct. There is no substitute for spending the
time to learn to program. Like juggling, you simply can not learn to do it by reading
about it or watching someone else do it. Is the investment of time and energy to gain this
skill a good one? Consider what you might do with that time otherwise. If the time
would have been spent watching TV or playing video games... odds are you can finish
that sentence.

The next chapters will review the material glossed over here in a more detailed fashion. If
you choose to continue, see you in the next chapter!

I. End of chapter material

i) New terms in this chapter
HTML - hypertext mark-up language: an embedded command formatting language com-

monly used for web pages. 63
pixels - picture elements, the smallest drawable part of the output 63
signature - the type, name of a method along with the number of parameter and their types

62

ii) Review questions
 4.1 Why are prototypes useful to build first?

Simply Java Chapter 4: Graphics and Inheritance

CS231 Spring 5 Page 90

 4.2 Why is design important?
 4.3 What are the first two things to do in design?
 4.4 What is a graphics context?
 4.5 What message do you send to an Applet to cause paint() to happen? Does it have

parameters?
 4.6 What are parameters for?
 4.7 What are the two techniques of class reuse?
 4.8 What does pixel mean?
 4.9 How many colors (exactly) are possible in Java?
 4.10 What are the parameters for drawRect()? fillRect()? drawOval()? fillOval()?

drawLine()? setColor()?
 4.11 How do you change the size of the Applet (so it stays changed!)?
 4.12 What are accessors for?
 4.13 How do you fix a bug you can’t find?

iii) Programming exercises
 4.14 Write the paint() method for Circle.
 4.15 Write the accessors for Circle.
 4.16 Write the Circle class.
 4.17 Write the FilledCircle class.
 4.18 Create a Target class that is displayed as alternating red and white bands of color.

Hint; draw the biggest fillOval first and work in.

CS231 Spring 5 Page 91

Simply Java Chapter 5: Towards consistent classes

Chapter 5: Towards consistent classes

"When facing a tree, if you look at a single one of its red leaves, you will not see
all the others. When the eye is not set on any one leaf, and you face the tree with
nothing at all in mind, any number of leaves are visible to the eye ..."
 Takuan

A. Introduction
Takuan was a Buddhist master who lived in the middle of the second millennium. You
may wonder how a 500 year old quote from a Buddhist is relevant to computing; let me
explain. Buddhists had been studying human nature for 2000 years at that point; and
people haven’t changed in 500 years. Our culture (language, technology, education) has
changed radically since, but our DNA; our bodies, our brains, our minds are just the
same. One of the things Buddhists have studied extensively is attention. They recommend
paying complete attention to whatever you are doing, whether it is writing code or
washing the dishes (see T. N. Hanh). The resulting focus can change your life.

How is object programming different from procedural programming (from which it
grew)? In this context, the leaves on Takuan’s imaginary tree are classes. If you are
practicing object programming correctly, when you are writing a class, you are thinking
of nothing but that class. This provides tremendous power, because you are not distracted
and can focus on writing a bug-free class. Once it is written and tested, you can forget
what’s inside and devote your attention to other matters. This is one of the most important
advantages of object programming.

A major constraint on a programmer’s ability to think clearly (and thus solve the
problems that inevitably arise when programming) is cognitive overhead. If every class is
similar, once the pattern becomes familiar, the programmer’s cognitive overhead is
reduced. This chapter will present a method for writing classes that will be used in every
class from now on. There are many styles of programming, and no one can say that one is
best for everyone. The style recommended here is simple and consistent; that’s enough
for now.

This chapter includes more complete explanations of the components of classes. That
requires a fair amount of detail and a bit of notation. So, the sections describing class
components will be bracketed by sections presenting some of the associated details. Read
those detail sections briefly, but return to them in a few days; they are dull, but learning

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 92

them will save you many hours later. The first introduces the syntax and semantics of
Java statements in a more rigorous way.

B. Details I - Statements in Java: syntax and semantics
So far, the code in the book has only used three kinds of Java statements: assignment
statements, message statements and return statements. They can be easily distinguished.
Every assignment statement has an equals sign, like, balance = 17;. Every return
statement starts with the word return. Every message statement has a ".", like,
System.out.println("greetings");, although sometimes the "."s are added
automatically by the compiler and do not appear in the code. The good news is there are
only about a dozen statements total in Java. You may be wondering what all the rest of
the code so far has been composed of; mostly declarations (class, method, and variable).
These will be covered in the next section.

i) Syntax and Semantics
Syntax is another word for grammar. It has nothing to do with meaning. The syntax of
Java (or any programming language to date) is very simple compared to a natural
language like English. The compiler uses what is called a context free grammar to check
the syntax and, if it is correct, then converts the source code to byte code (See "The Java
Virtual Machine" on page 12). A context free grammar is composed of a set of
productions. The syntax of each statement is defined by a single production, as will be
seen below. Once you have learned the syntax of each of the elements of Java, the
mystery of syntax errors will be mostly dispelled.

Semantics is another word for meaning. In the context of programming, semantics
means action (this is sometimes called operational semantics). The semantics of a
statement is the action it performs when it is executed.

ii) BNF notation
The productions of a grammar are often represented in BNF notation, which stands for
Backus Naur Form (Backus and Naur were the originators of this representation of
grammars). This is a metalanguage, i.e. it is a language which is about a language. Since
you are not familiar with the Java language, and you are familiar with English, here’s an
introduction to BNF for a subset of English.

CS231 Spring 5 Page 93

Simply Java Chapter 5: Towards consistent classes

a) BNF for a tiny fragment of English
Consider a fragment of English where every sentence is composed of a noun phrase
followed by a verb phrase. This could be written as the BNF production:

<sentence> ::= <noun phrase> <verb phrase>

The "::=" means "is defined as". So, this is read, "A <sentence> is defined as a
<noun phrase> followed by a <verb phrase>. Things between pointed brackets are called
non-terminal symbols and must be defined somewhere in the grammar. So to complete
this grammar we would need definitions of <noun phrase> and <verb phrase>. For now
let’s say that the only legal verb phrases are "runs" and "jumps". In BNF:

<verb phrase> ::= runs | jumps

The vertical bar (|) means "or". Symbols without brackets, like "runs" and "jumps" are
called terminal symbols and must appear literally.

Assume that a noun phrase is either a proper name, or an article followed by a noun. In
BNF:

<noun phrase> ::= <proper noun> | <article> <noun>

Let the proper nouns be "Jane", "Dick", or "Spot", the articles, "a" or "the", and the nouns
be "cat", or "mouse". In BNF:

<proper noun> ::= Jane | Dick | Spot

<article> ::= A | The

<noun> ::= cat | mouse

All the non-terminals have been defined (i.e they have appeared on the left of a ::=) so the
grammar is finished. What language does it generate? In other words, what are all the
legal sentences in this language? Here they are, in left to right order:

Jane runs
Jane jumps
Dick runs
Dick jumps
Spot runs
Spot jumps
A cat runs
A cat jumps
A mouse runs
A mouse jumps

Summary of BNF Notation
::= -- is defined as
<x> -- one thing of type x
| -- or
[x] -- optional x
[x]* -- 0 or more x’s

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 94

The cat runs
The cat jumps
The mouse runs
The mouse jumps

So, there are just 14 legal sentences in the language. Let’s add optional adjectives to make
it a bit more interesting.

b) Adding adjectives

The notation for an optional symbol is [optional thing]. So, to allow the two sentences:
"The big cat runs", and "The cat runs", the following productions will do:

<noun phrase> ::= <proper noun> | <article> [<adjective>] <noun>

<adjective> ::= big | small | black | white | ferocious

English allows multiple adjectives to modify a noun. If we wanted to allow a sentence
like, "The big black ferocious cat jumps", the requisite production would be:

<noun phrase> ::= <proper noun> | <article> [<adjective>]* <noun>

Notice the "*" after the []’s. This means "0 or more repetitions of the symbol in the []’s.
Here is the grammar all collected together:

<sentence> ::= <noun phrase> <verb phrase>

<noun phrase> ::= <proper noun> | <article> [<adjective>]* <noun>

<verb phrase> ::= runs | jumps

<adjective> ::= big | small | black | white | ferocious

<proper noun> ::= Jane | Dick | Spot

<article> ::= A | The

<noun> ::= cat | mouse

How many sentences does this grammar generate?

Review the BNF notation summary to be sure you know it, the next sections depend on it.

iii) BNF, Java and adaptive systems
The Java compiler, like any contemporary compiler, is very literal and rigid. It insists that
source code match its grammar, symbol by symbol. Any deviation will result in compiler

CS231 Spring 5 Page 95

Simply Java Chapter 5: Towards consistent classes

errors; and errors prevent the compiler from producing byte code, and without byte code
you can’t execute your program.

Syntax error are just details, but they are details that can stop you. If you omit, or misuse
a comma in an English paper, you may be corrected by your teacher, or lose points, but
your English teacher can still understand your meaning. The compiler, by contrast, will
cut you no slack. If a program is missing a semicolon, or has a misspelled word, no
matter how many times you compile it, it will still generate an error, and will still not run.
In the person/compiler system, the person must make the adjustment, the compiler will
not. Fortunately, once you know the BNF, you will at least know what the compiler is
looking for.

iv) The assignment statement
The assignment statement, while simple and unprepossessing is the only one that changes
the state of a program. Its grammar is shown in BNF 5.1. Every assignment statement

matches this syntax. I.e. every assignment statement is a variable, followed by the
assignment operator, followed by an expression, and finally a semicolon. This has
several implications: 1) The only thing that can appear on the left of the assignment
operator is a variable and whenever you see an assignment operator, you know that
whatever is to the left of it is a variable, otherwise it won’t compile into working code. 2)
Only an expression can appear to the right of the assignment operator and anything that
appears there must be an expression, for the same reason. 3) Any other syntax is illegal.

What is not specified by the BNF, but is necessary for an error free program, is that the
type of the expression must be compatible with the type of the variable. If the types are
not compatible a compiler error will occur. The details of compatibility appear in
"Expressions" on page 120.

Check which symbols in the following examples correspond to which BNF symbols.
Examples:
balance = nuBalance; // see Code Example 3.2 on page 48
balance = balance - amountToWithdraw; // see Code Example 3.4 on page 50

BNF 5.1 The assignment statement

<assignment stmt> ::= <variable> = <expression>;

Semantics
1: Evaluate the <expression>

2: Assign that value to the <variable>

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 96

currentAccount = account3; // see Code Example 3.10 on page 56
myColor = c; // see Code Example 4.11 on page 82

v) The message statement
Computing is information processing. Almost all information processing in a Java
program is accomplished by sending messages to objects. As BNF 5.2 shows, every

message statement is an object followed by a period, followed by a message (which has
parameters enclosed in parentheses).

The BNF does not specify that that method must be defined in the class the object
belongs to (or one of its superclasses). Again, the compiler will catch the error if it is not
(see "The mechanics of message sending" on page 138).

Examples:
myAccount.setBalance(1234); // from Code Example 3.3 on page 49
System.out.println("Greetings"); // from Code Example 2.2 on page 22
rightEye.growPupil(); // from Code Example 4.15 on page 85.

But, here are some message statements that do not appear to match that syntax; they have
nothing to match <object>.
initComponents(); // from Code Example 4.9 on page 77
repaint(); // from Code Example 4.15 on page 85

This is because these are shorthand for this.initCompontents() and this.repaint();
The compiler fills in "this" for you (see "Special to Java -- what is this?" on page 115).

vi) How to generate a Null Pointer Exception
One of the most common run-time errors is the Null Pointer Exception. That name is a bit
worrisome, but actually descriptive. The way to generate one is to send a message to an
object which has been autoinitialized to 0, which, for references (and all Objects in Java
are references) is considered to be "null". So, if you send a message, any message, to an

BNF 5.2 The message statement

<message stmt> ::= <object>.<message>([<actual parameters>]);

Semantics
1: Perform the parameter linkage (See "Parameters (actual, formal, linkage)" on
page 104).

2: Execute the method body of the associated method, using the <object> as this.

CS231 Spring 5 Page 97

Simply Java Chapter 5: Towards consistent classes

object variable before you set it to reference an object, it will always generate a Null
Pointer Exception. Like this:

class Broke {
Object theObject;

Broke() {
 theObject.toString();
}

Every time you have a Null Pointer Exception, it means your program has tried to send a
message to an Object that hasn’t been initialized (or has been set accidently to null).
Every time.

See "Exceptions" on page 350 for more details.

vii) The return statement

Return statements are used to exit a method and can be used to pass information back to
the point that the message was sent. If the return type of the method is not void, the
compiler will insist that the <expression> exist and be of a type compatible with the type
of the method.

Any of the accessors that get values have exactly one line in their bodies, a return
statement. As you can see in Code Example 5.1 on page 99, the type int appears before
getBalance() -- this is the type of the method.

BNF 5.3 The return statement

<return stmt> ::= return [<expression>];

Semantics
If there is no <expression>, return immediately to where the method was
invoked.

If there is an <expression>:
1: Evaluate the <expression>

2: Leave the method immediately, returning that value as the value of the message that
invoked the method.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 98

Examples:
return balance; // from Code Example 3.2 on page 48
return currentAccount.getBalance(); // from Code Example 3.10 on page 56

Notice in the second example that the <expression> is a message; whatever its method
returns is its value.

C. The basics of classes
As discussed previously, a class declaration defines a template for objects (or instances)
of that type. It includes both variable and method declarations. Variables contain
information. Methods perform actions; what an object can do depends on what methods
are declared and how they are implemented. Now that you have some experience with a
few classes, it is possible to gain a more detailed understanding of how they work. A
class may have many methods, but this section will only cover the standard methods,
accessors and toString() -- on the other hand, these will be described more or less
completely.

i) Variables I (state)
Variables store information; the state of an object is determined by the value of its
variables. Every variable has a name, a type, and a value. When a variable is declared,
only the name and type are required. There are a variety of variables in Java, including:

instance, class, local, parameter and method variables. In this section only instance
variables will be presented.

Examples:
int balance; // see Code Example 5.1 on page 99
String name;

BNF 5.4 Variable declaration 1

<variable declaration> ::= <type> <identifier>;

Semantics
1: Create a variable of the given <type> with the name <identifier>

CS231 Spring 5 Page 99

Simply Java Chapter 5: Towards consistent classes

Recall the Account class (see Code Example 5.1). Each Account object must keep track

of the name and balance in a particular bank account. So, the Account class has two
variables, balance and name; they must be declared outside of any method. The type of
balance is int, the type of name is String.

The alert reader will have noticed that the two variable declarations in Code Example 5.1
do not conform to the syntax in BNF 5.4. The protected keyword and the assignment are
optional and do not appear in that BNF definition. In fact, the BNF for a variable
declaration is:

Examples:

Code Example 5.1

1 public class Account {
2 protected String name = "nobody";
3 protected int balance = 1000000;
4
5 Account(){ //empty default constructor
6 }
7
8 public int getBalance() {return balance;}
9
10 public void setBalance(int nuBalance) {balance = nuBalance;}
11
12 public void withdraw(int amountToWithdraw) {
13 balance = balance - amountToWithdraw;
14 }
15 }

The Account class from Chapter 3.
To set the initial balance for every account to $1,000,000. Change is in bold.

BNF 5.5 Variable declaration 2

<variable decl> ::= [<access>] <type> <identifier> [=<expression>];

Semantics
1: Create a variable of type <type> with the name <identifier> with the <access>
defined.

2: If the optional =<expression> is there, perform the assignment statement.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 100

Account account2 = new Account(); // see Code Example 3.9 on page 56
Bank theBank = new Bank(); // see Code Example 3.12 on page 59
String returnMe = "I am a Circle: "; // see Code Example 4.3 on page 72
protected Color myColor = new Color(100,0,100); // Code Example 4.11 on page 82
protected int balance = 1000000; // see Code Example 5.1 on page 99

In the case of instance variables, the variable is created when the object is instantiated;
i.e. if the object is an Account, when the new Account() is executed. If there is an
=<expression>, the variable is then initialized to the value of the <expression>, otherwise
to zero.

Each instance of a class has a copy of each instance variable; that is why they are
called instance variables. The balance variable in Account is a good example; every
account needs to keep track of a different balance, and thus needs an instance variable do
to it.

ii) Methods (control)
The standard methods include two accessors for each variable and a toString() method for
debugging. Additionally, most classes have various constructors to make initialization
simple, plus other methods which expand its capabilities. This section will present the
syntax of method declarations, using examples from accessors you have already seen.
Then a tool that writes these methods automatically will be introduced before the rest of
the description of methods.

CS231 Spring 5 Page 101

Simply Java Chapter 5: Towards consistent classes

The syntax of every method declaration is a method heading followed by a method body.

The method heading can take several forms since the access modifier, the return type, and
the parameters are optional; the name, and parentheses are not optional.

Examples (again, match the code symbols to the BNF):
void setBalance(int nuBalance) -- [<access>] omitted, no return, one int parameter
int getBalance() -- [<access>] omitted, returns an int value, no parameters
public String toString() -- access is public, returns a String, no parameters
public void paint(java.awt.Graphics g) -- access public, no return, one Graphics
parameter.

The BNF for <identifier> and < formal parameters> are omitted (recall that an identifier
is any series of letters, numbers and underscores beginning with a letter). Parameters are
addressed below ("Formal and actual parameters" on page 104).

BNF 5.6 Method declaration

<method decl> ::= <method heading> <method body>

Semantics
A method declaration is not ever executed. So it does not have semantics in
the sense of statements. Nevertheless, it does have a meaning, namely:
Create a method for the current class with the signature declared in the method
heading. The body of the method is executed when the corresponding message
is sent.

BNF 5.7 Method heading

<method heading> ::= [<access>] [<return type>] <identifier> ([<formal parameters>])

Semantics
A method heading is never executed. It defines the signature of the method.
Constructors do not have a return type. For ordinary methods, if the return type is
not void, the method body must end with a return statement whose <expression>
has a type compatible with the <return type>

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 102

A method body is simply a block statement and a block statement is zero or more

statements enclosed in {}s.

a) return types
Every method that is not a constructor must have a return type. Any legal type may be a
return type. if nothing is returned, the return type must be declared as void.

b) Accessors

Classes typically store information; other classes need to access that information, both to
discover what it is and to update it. The methods that give other objects access to
variables inside an object are called accessors. These are also called "getters" and
"setters", as they get and set the values of the variables they access.

BNF 5.8 Method body

<method body> ::= <block statement>

Semantics
Same as the block statement.

BNF 5.9 Block statement

<block statement> ::= { [<statement>]* }

Semantics
Execute each statement in the block in order.

CS231 Spring 5 Page 103

Simply Java Chapter 5: Towards consistent classes

• getters - get values

Every getter is the same, except for three symbols. Compare the two methods in Code
Example 5.2; review Code Example 3.2 on page 48 if these seem unfamiliar. The only

differences are the return type (int or String), the name of the method (getBalance() or
getName()), and the variable whose value is returned (balance or name). Both have a
return statement as the only statement in the body of the method.

The int return type in getBalance() means that the getBalance() message is an expression
of type int and so can appear anywhere an int expression is legal (See "Expressions" on
page 120).

• setters - set values

Setters too are all the same shape. Compare the two in Code Example 5.3. Both are void

(meaning they return nothing), with one parameter, which is used to set the variable

Code Example 5.2

1 public int getBalance() {
2 return balance; // return the balance
3 }
4
5 public String getName() {
6 return name; // return the name
7 }

 Two getters; for balance and name.

Code Example 5.3

1 public void setBalance(int nuBalance) {
2 balance = nuBalance; // set the balance
3 }
4
5 public void setName(String nuName) {
6 name = nuName; // set the name
7 }

 setBalance() and setName().

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 104

involved. Both have a single assignment statement as the body of the method. They are
identical in form, the differences stem from the names and types of the variables being
set.

c) Parameters (actual, formal, linkage)

Parameters carry information into methods. The first step in executing a message
statement is to perform the parameter linkage. To describe the parameter linkage requires
a few new terms.

• Formal and actual parameters

There are two varieties of parameters, actual parameters and formal
parameters. Consider Code Example 5.4, which is a copy of Code Example 3.3 along

with the setBalance code from the Account class. Line 12 sends the setBalance() message
to the myAccount object with the parameter 1234. Line 3 is the method heading for
setBalance() and defines a parameter of type int. The former (1234) is the actual
parameter, the latter (int nuBalance) is the formal parameter.

Code Example 5.4

1 class Account {
2 ...
3 public void setBalance(int nuBalance) {
4 balance = nuBalance; // set the balance
5 }
6 } // Account class
7 ...
8
9 public static void main(String[] args) {
10 Account myAccount = new Account();
11 System.out.println("Before balance=" + myAccount.getBalance());
12 myAccount.setBalance(1234);
13 System.out.println("After balance=" + myAccount.getBalance());
14}

 Actual and formal parameter for setBalance().
Line 3: The formal parameter in the setBalance() definition is int nuBalance.
Line 12: The actual parameter in the setBalance() message is 1234.

CS231 Spring 5 Page 105

Simply Java Chapter 5: Towards consistent classes

One mnemonic for which is which is that the formal parameter is part of the definition of
the method and definitions are formal things. Plus, the actual parameter is the value that
is actually sent along with the particular message that invokes the method.

In BNF 5.10, the first production means, "<formal parameters> is defined as a <formal
parameter> followed by any number of additional <formal parameter>s separated by
commas". It may take a bit of thinking to realize why this BNF production generates that.
The form is identical for actual parameters.

When there is more than one parameter, the formal and actual parameters are matched up
in the order that they appear. The first actual parameter is said to correspond with the first
formal parameter; the second, with the second; and so on.

Each formal parameter is a variable declaration, i.e. a type and a name; each actual
parameter is an expression of a type compatible (See "Expressions" on page 120) with the
corresponding actual parameter. Parameters of both types always appear between
parentheses and are separated by commas.

• Parameter linkage

With the phrases actual parameter, formal parameter and corresponding parameter
understood, the parameter linkage operation (the first step of the semantics of a message

BNF 5.10 Formal parameters

<formal parameters> ::= <formal parameter> [, <formal parameter>]*

<formal parameter> ::= <type> <identifier>

Semantics
Declares one or more local variables which are created when the method is
invoked and destroyed when it returns.

BNF 5.11 Actual parameters

<actual parameters> ::= <actual parameter> [, <actual parameter>]*

<actual parameter> ::= <expression>

Semantics
Each expression is evaluated before the message is sent as part of the
parameter linkage.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 106

statement) may be expressed fairly succinctly. To perform a parameter linkage, for
each parameter:
1. evaluate the actual parameter
2. assign that value to the corresponding formal parameter

What is the difference between this and the semantics of the assignment
statement?

Example: Code Example 4.14 on page 84 is the shrinkPupil method for the Eye class. Its
body is a single statement:
 pupil.setRadius(pupil.getRadius() - 2);

Answer these questions before reading the answers. It’s okay to look back to discover the
answers if you know you know, but can’t remember.

What type of statement is this?

What message is sent?

What object is it sent to?

What type is that object (i.e. what class is it an instance of)?

What is the parameter?

Describe the semantics of executing this statement.

If you have no idea what most of the answers are, don’t feel bad, there is a tremendous
amount of detail piling up here, and it’s all interrelated. Maybe it’s time to take a break
and then, when your head is clear and you can focus again, reread the beginning of the
chapter. You do want to learn this stuff, right?

 pupil.setRadius(pupil.getRadius() - 2);

Assuming you could answer most of them, here are the answers. This is a message
statement. It sends the setRadius message to the pupil object (which is a FilledCircle, See
"The Eye class" on page 83), with the actual parameter pupil.getRadius() - 2.

CS231 Spring 5 Page 107

Simply Java Chapter 5: Towards consistent classes

To execute that statement, Java first performs the parameter linkage, then executes the
message body. The parameter linkage has two parts: First, evaluate the expression,
second, assign the value thus derived to the formal parameter. To evaluate a message
statement, Java executes the message and uses what is returned as the value, so, the first
thing that happens is pupil.getRadius() is executed.

The getRadius() method has no parameters, so the action is simply to execute the method
body, which is one statement (return radius;), which sends back the value of the radius
variable from inside the FilledCircle named pupil. Assume that its value is 50.

To complete the evaluation of pupil.getRadius() - 2 Java subtracts the 2 from the 50
that came back from getRadius, yielding 48. That is then assigned to the nuRadius
parameter in the setRadius() method. The body of that method is the assignment
statement radius = nuRadius; whose execution stores the value of nuRadius (namely,
48) back in the radius variable inside the pupil object.

That’s a lot of detail! The good news is that you don’t actually have to think about that
when you’re programming, once you understand the basics; it all disappears into
expertise. You just think something like, "Hmmm, shrinkPupil needs to make the pupil a
little smaller. How about 2 pixels? Okay. pupil.setRadius(2 less than it is);
Hmmm, what is the radius now? Oh yeah, getRadius(). So,
pupil.setRadius(pupil.getRadius-2);." -- and type that.

d) toString()

This is the standard debugging output routine for every class. Its signature, public
String toString(), conveys several pieces of information to a Java savvy reader: 1) the
name of the method is toString, 2) it has no parameters, and 3) it returns a value of type
String. When writing a class, you can make toString() return any information you choose,
so long as it is in a String. The most obvious information to include is the type of the
object (i.e. what class it instantiates) and the current value of its variables.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 108

In Code Example 4.3 on page 72, the body of the method has 5 statements. The first is a

variable declaration statement with initialization to the String "I am a Circle: ". This
variable, returnMe, is not an instance variable, because it is declared in the body of a
method it is a method variable (See "local variables: parameters, method variables, and
for loop variables" on page 126) The next three each concatenate: 1) a tab, 2) an instance
variable name, 3) an equals sign, and, 4) the value of that variable, obtained through its
accessor. The last statement is a return statement which sends back the value of returnMe
as the value of the toString() message wherever it was sent.

D. The ClassMaker tool

i) Motivation
The process of programming is not simple, nor is it easy. Even after you understand the
concepts, there is a host of details that must be attended to before a program can be
completed. Many of the details a programmer must deal with stem from the rigidity of the
software, which stems from the mindlessness of current computers.

On the other hand, computers are incredibly useful owing to their blinding speed and
disregard for endless repetition. In this regard, they are a pretty good complement to
human skills/proclivities with the appropriate software; tasks that always involve the
exact same actions can be mechanized. Robot factories good!

Code Example 5.5

1 public String toString() {
2 String returnMe = "I am a Circle: ";
3 returnMe += "\tx=" + getX();
4 returnMe += "\ty=" + getY();
5 returnMe += "\tradius=" + getRadius();
6 return returnMe;
7 } // toString()

 toString() for the Circle class
Line 2: Declare the String variable to return; set it to "I am a Circle: "
Line 3: Paste a tab (\t) onto it, followed by "x=" and the value of x.
Line 6: Return that whole String as the value of toString()

CS231 Spring 5 Page 109

Simply Java Chapter 5: Towards consistent classes

The large majority of programming time is spent selecting, designing, and implementing
classes. Although the very simplest programs may have only one or a few classes, any
substantial project has a number of classes. Once you have mastered accessors,
constructors and toString(), writing them is less than exciting; and, as you have seen
above, they have the same format in every class. That means software could be written to
generate them automatically.

The author has written a ClassMaker class that inputs the shell of a class, with just the
name and a list of variables, and produces the constructors, accessors, and toString() from
a single button press. It is publicly available for your benefit, but you are only allowed to
use it after you can write those methods correctly from memory. The reason is that the
mechanics of accessors, constructors and toString() are those of the majority of all
methods and until you understand how to write them, everything else will be hopeless.
Hopeless. Get it? Don’t use the ClassMaker until you can write these methods yourself
without peeking. The easy way, is not easy in the long run.

ii) ClassMaker input and output
Once you are able to write constructors, accessors, and toString() from memory (in my
classes, usually everyone can do it by the fourth or fifth week; it just takes practice), you
are ready to use the ClassMaker. It takes some of the drudgery out of creating a new
class, and any repetitive task that can be automated should be.

You can find the ClassMaker at:
http://www.willamette.edu/~levenick/classMaker/makeClass.html
Code Example 5.6 is the input to the ClassMaker to produce the Account class in Code
Example 5.7. Note that it produces the default constructor, accessors for both variables,

and a toString() method that displays the values of both variables by using their

Code Example 5.6

class Account {
 int balance;
 String name;
}

 Input to the ClassMaker

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 110

constructors. You can copy and paste from the webpage into the Netbeans editor window.

Read each line of code in it Code Example 5.7. Become familiar with it; that means be
aware of: 1) the name of the class, 2) each variable (its name and type), and 3) each
method (its heading and body). Do that now. Notice anything strange? The setters are
different than those earlier in the text. They do exactly the same thing as the previous
setters in a different way; the details are in "Special to Java -- what is this?" on page 115.

As an exercise, recreate the ATM Applet from scratch using the classmaker to create the
frameworks for Account, and Bank. Notice how much of the code is written for you. Do
the same for the Eyes Applet. Expect this to take several hours. Sorry. It’s good to

Code Example 5.7

1 public class Account {
2
3 protected int balance;
4 protected String name;
5
6 public Account(){} //empty default constructor
7
8 public Account(int balance, String name) { //initializing constructor
9 this();
10 this.balance = balance;
11 this.name = name;
12 }
13
14 public int getBalance() {return balance;}
15 public String getName() {return name;}
16
17 public void setBalance(int balance) { this.balance = balance;}
18 public void setName(String name) { this.name = name;}
19
20 public String toString() {
21 String returnMe = "I am a Account: ";
22 returnMe += "\tbalance=" + getBalance();
23 returnMe += "\tname=" + getName();
24 return returnMe;
25 } // toString()
26} // Account

 The Account class produced by the ClassMaker
Pretty groovy, eh?

CS231 Spring 5 Page 111

Simply Java Chapter 5: Towards consistent classes

practice; when you are trying to learn a new programming environment or language, you
must repeat very simple tasks over and over until you can do them effortlessly without
running into problems/perplexities each time -- then you will know you have mastered
the process.

You should expect to discover that it’s much easier to do things the second time, plus this
time what you’re doing will make more sense. Once the mechanics of using Netbeans
becomes more of less automatic you will have more cognitive capacity for the problems
that will inevitably arise while programming.

E. Constructors
A peculiarity of OOP is that often much of the functionality of a class is subsumed by the
constructors (or constructor chains). This statement will make more sense once you have
had some experience with constuctors.

Syntactically, a constructor declaration is like any other method declaration, with two
differences. First, there is no return type (and no value can be returned). Second, its name
must be the same as the class it is in.

Executing a constructor is just like executing any other method, but it happens
automatically when you create an object of that type with matching parameters.

i) Default constructors
A default constructor has no parameters. When the following line is executed:
 Account myAccount = new Account();

these three things happen.
1. The new Account object is created, i.e. space is allocated for all its variables.
2. The default constructor is executed.
3. The newly constructed Account is returned and stored in the myAccount variable.
There are thus two ways to automatically initialize the value of an instance variable;
either use an assignment with the declaration int balance=1000000;, or insert an
assignment statement in the default constructor:
 public Account() { balance = 17; }

Assuming you did both, what would the initial value of balance be?

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 112

ii) Account class including a constructor with parameters
Usually, when you create objects, you wish to give them particular values. With only a
default constructor, you are forced to first create the object and then set its values with
accessors. These three lines can be compressed into one if there is a constructor that is
passed initial values for the instance variables, as shown in Code Example 5.8. For a

Circle, one line replaces four as Code Example 5.9 shows. Obviously, it is less keystrokes

and clearer to use the initializing constructor, and the ClassMaker writes it for you.

Code Example 5.8

1 Account myAccount = new Account();
2 myAccount.setName("Frodo");
3 myAccount.setBalance(1000000000);
4
5 or
6
7 Account myAccount = new Account("Frodo", 1000000000);

 Creating and initializing an Account using a default constructor

Code Example 5.9

1 Circle myCircle = new Circle();
2 myCircle.setX(200);
3 myCircle.setY(100);
4 myCircle.setRadius(77);
5
6 or
7
8 Circle myCircle = new Circle(200, 100, 77);

 Creating and initializing an Account using a default constructor

CS231 Spring 5 Page 113

Simply Java Chapter 5: Towards consistent classes

iii) Eye/FilledCircle/Circle classes including a constructor with parameters --
and simplifications appertaining thereunto
If we rewrite the Eye Applet using initializing constructors, there are a number of
savings. Most obvious is where we create and initialize the Eyes . After using the default

constructor, the position and size must then be initialized; three lines of code in
initComponents(). With the initializing constructor those three lines disappear; see Code
Example 5.10. Better, by adding the color to the initializing constructor the color can be
initialized when the Eye is created as well; Code Example 5.11. In this example, the

initializing constructors for both Eye and the built-in class Color are used. The fourth
parameter to new Eye() is the constructor for Color. You will recall that the parameter
linkage mechanism first evaluates each actual parameter and then copies each value to
the corresponding formal parameter. To evaluate the Color constructor, a new Color
object is instantiated and then passed to the Eye constructor (which passes it on to the

Code Example 5.10

1 Eye rightEye = new Eye();
2
3 ...
4
5 rightEye.setX(600);
6 rightEye.setY(100);
7 rightEye.setRadius(100);
8
9 vs...
10
11 Eye rightEye = new Eye(600,100,100);

 Creating and initializing an Eye using an initializing constructor

Code Example 5.11

1 Eye rightEye = new Eye(600,100,100,new Color(200, 177, 200));

 Creating and initializing an Eye with color using an initializing constructor

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 114

FilledCircle object that is created in it, see Code Example 5.12). This is an example of

Code Example 5.12

1 import java.awt.*;
2
3 public class Eye {
4
5 protected FilledCircle iris;
6 protected FilledCircle pupil;
7
8 public Eye(){} //empty default constructor
9
10 public Eye(int x, int y, int radius, Color myColor) {
11 this(); // invoke the default constructor
12 iris = new FilledCircle(x,y,radius, myColor);
13 pupil = new FilledCircle(x,y,radius/2, Color.black);
14 }
15
16 public FilledCircle getIris() {return iris;}
17 public FilledCircle getPupil() {return pupil;}
18
19 public void moveRight() {
20 iris.moveRight();
21 pupil.moveRight();
22 }
23
24 public void paint(java.awt.Graphics g) {
25 iris.paint(g);
26 pupil.paint(g);
27 }
28
29 public String toString() {
30 String returnMe = "I am a Eye: ";
31 returnMe += "\tiris=" + iris.toString();
32 returnMe += "\tpupil=" + pupil.toString();
33 return returnMe;
34 } // toString()
35} // Eye

 Eye class, modified
Line 12: Pass along the Color, created in the actual parameter of the Eye constructor, as a

parameter to the FilledCircle constructor.

CS231 Spring 5 Page 115

Simply Java Chapter 5: Towards consistent classes

what this section mentioned at the start, namely the phenomenon that in object
programming, much of the work can be migrated to the constructors.

iv) Special to Java -- what is this?

a) this
The reserved word "this" has a special meaning in the context of an instance method, it is
the object which was sent the message that caused this method to be executed; or, shorter,
the current object. In the context of a constructor, "this" is the object that is being
constructed.

The code written by the ClassMaker uses this to access instance variables. Compare the
two setters in Code Example 5.13, which are copied from Code Example 5.4 and Code

Example 5.7. They both do exactly the same thing, namely assign the value of their
parameter to the instance variable named balance. In the first version, the name of the
parameter is nuBalance, so line 2 assigns the value of that parameter to the instance
variable balance as desired. In the second version, the parameter is named balance, just
like the instance variable. Thus, in the body of the second setBalance(), there are two
different variables, both with the name "balance" If the programmer, without thinking,
attempted to set the instance variable named balance to the value of the parameter named
balance by typing balance = balance; on line 6, it could cause a hard to find bug. When
there are two variables with the same name defined in the same place, Java uses the one
that is defined the closest (actually the one defined in the nearest enclosing scope, see
"Variables II (varieties and scope)" on page 126). In this case the parameter balance is

Code Example 5.13

1 public void setBalance(int nuBalance) {
2 balance = nuBalance;
3 }
4
5 public void setBalance(int balance) {
6 this.balance = balance;
7 }

 Two versions of the getBalance()
Both set the instance variable balance to whatever value is passed through the parameter. The

second uses this. so the value of the parameter is stored in the instance variable instead
of just being copied into itself.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 116

defined closer (looking up the code from line 6), so it is used both times (it is said to
shadow the instance variable). So, the value of the parameter balance is retrieved and
stored back in the parameter balance, leaving the instance variable balance unchanged.
To specify the instance variable balance, use this.balance.

The code the ClassMaker made for Circle included an initializing constructor, shown in
Code Example 5.14. The parameters x, y, and radius, are the same as the instance

variables, so it uses this to store the values in the instance variables.

b) this()

If there are initialization tasks that are being performed for every new instance of an
object, they should be done in the default constructor. That way, later, when you (or other
people) add additional initializing constructors, as long as they invoke the default
constructor, the functionality of all the constructors can be preserved even when someone
subsequently alters the default constructor. To invoke the default constructor, in another
constructor, you say, this(). But it must be the first line of the constructor body; otherwise
it will not compile.

Code Example 5.14

1 public class Circle {
2
3 protected int x;
4 protected int y;
5 protected int radius;
6
7 public Circle(){} //empty default constructor
8 public Circle(int x, int y, int radius) { //initializing constructor
9 this(); // invoke the default constructor
10 this.x = x;
11 this.y = y;
12 this.radius = radius;
13 }

 Circle class
Note the use of "this" in the initializing constructor.
Line 9: invoke the default constructor; this() is the default constuctor
Lines 10=12: set the three variables. this.x is the instance variable x

CS231 Spring 5 Page 117

Simply Java Chapter 5: Towards consistent classes

Wait! What was all that in the previous paragraph? It seemed to be about avoiding
possible future problems if someone added initializing constructors and then after that
someone else changed the default constructor. If all you’re doing is trying to learn to
program and writing tiny little programs that are just going to be discarded, who cares?!
Okay, right, of course not. Like much of Java, this only makes any appreciable difference
when you are doing something big and complicated. This is what makes learning Java a
bit difficult at first. If you have the feeling it’s more complicated than it needs to be to
accomplish simple tasks, you are exactly right.

It’s a bit like if you want to build a little, simple bird feeder and your friend who is a
machinist says, "I’ve got just what you need.", and opens the door to a machine shop as
big as a basketball arena, packed full with numeric control machines, whirring and
spinning ominously. And all you really need is a hand saw and a hammer. Overkill. On
the other hand, if you were one day planning to build something complicated, like
perhaps a Mars rover, or a better cell phone, or... you name it; then you couldn’t possibly
do it with the hammer and saw.

So, don’t worry about those details right now, just be aware of them, so if sometime you
run into this() you won’t be completely flummoxed. By the way, the three programmers,
the first who wrote the class originally, the second who modified the initializing
constructor, and the third who subsequently modified the default constructor, might all be
the same person at different times. They might all be you.

F. Details II

i) Types
In Java, a type is either a primitive type, a built-in class or a user-defined class. Some
types you have worked with include int, String, Applet, Account, Circle and Eye. The
first of those is a primitive, the next two are built-in and the last three user-defined. There
are several other primitive types, many built-in classes, and potentially infinitely many
user-defined classes.

a) Primitive types
The primitive types are either numeric or non-numeric. There are only two non-numeric
primitive types: char and boolean; these represent character and logical values,
respectively. The numeric types are either, whole numbers, roughly like the integers
(long, int, short, byte); or decimals, roughly like real numbers (double, float). But there
are infinitely many integers and uncountably infinite reals, whereas every primitive Java

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 118

type is represented in a limited amount of space and so can only take on a finite number
of values. The primitive types, along with their possible values and operators therefor
appear in Table 5.1.

For most applications ints will work fine for whole numbers and doubles for fractional
numbers. There is no reason to use float, short, or byte, unless you discover you are out
of memory; and that never happens (What never? No, never! What never? Well... hardly
ever!). If you tried to count all the people on the planet, or keep track of the national debt,
ints are too small, as 2^31 is only a little more an 2 billion. Fortunately longs would work
just fine for those. For unlimitedly large numbers there is the BigNumber class.

b) Numeric types, representation: bits, bytes and powers of two

Some people have the idea that computing is all about bits and bytes, zeros and ones; and
it is, underneath (just as life is all about chemistry, molecular machinery, underneath).
Modern computing deals very little with bits and bytes, but there are times when you
need to understand them a bit. One of those times is if you want to understand how
numbers are represented in Java and why they act the way they do.

The range of values for the type int is shown in Table 5.1 as -2^31 <= x <= 2^31-1-- this
has several implications and an informative cause. First, it means that if you need to store
numbers larger or smaller than that, you must use another type, in this case, long. Second,
if you add one to 2^31-1, instead of getting 2^31 as you might expect, you get negative

2^31instead! Try it for yourself. Set a variable to 2 billion (2000000000) and then add it

Table 5.1: types, values, operators

type range of values operators

long

int

short

byte

-2^63 <= x <= 2^63-1

-2^31 <= x <= 2^31-1

-2^15 <= x <= 2^15-1

-2^7 <= x <= 2^7-1

+, -, *, /, %

double

float
-1.8*10^308<x<1.8*10^308 +, -, *, /

boolean {false, true} !, &&, ||

char any keyboard character none

CS231 Spring 5 Page 119

Simply Java Chapter 5: Towards consistent classes

to itself and print the result. How to do this? Type these lines into a main() method, or if
your Applet is still on the screen, into init().

int big = 2000000000;
int bigger = big + big;
System.out.println("2 billion + 2 billion=" + bigger);

On my machine this code it prints:
2 billion + 2 billion=-294967296

Which is certainly not 4 billion! Why does this happen? The explanation stems from the
representation of ints.

An int is represented in Java as four bytes. A byte is 8 bits. A bit is the smallest possible
unit of information; it has only two values, 0 or 1. So, a bit is just enough information to
distinguish "yes" from "no". Four bytes have 8+8+8+8 bits, that’s 32, so an int can take

on 2^32 different values (if you don’t know why, reread "Problem Solving Principle #1 -
Build a prototype" on page 7). Half those values are used for positive numbers (zero on

up), the other half for negative numbers; half of 2^32 is 2^31. Since there is no negative

zero (i.e. the least negative number is -1) the smallest number is -2^31, whereas zero is

the smallest non-negative number, so that only leaves 2^31-1 other positive numbers.

The types, long, short and byte, have eight, two and one byte, respectively (that’s 64, 16
and 8 bits); if you look at Table 5.1, the ranges correspond perfectly to that.

c) Arithmetic operators

Table 5.1 shows four operators for doubles, the ordinary arithmetic operators, +, -, *, and
/. They work just the way you would expect; when applied to two double operands, they
yield a double value. Int operators when applied to two ints yield an int value. There are
two int division operators, / and %. Int division is the division you might have learned in
third grade, where 7/3=2 with a remainder of 1. The / operator, applied to two ints yields
the number of times the second goes into the first evenly, 7/3=2. The % operator yields
the remainder, 7%3=1.

d) Mixed expressions

When the two operands of an arithmetic operator are an int and a double, the int is
converted to a double and double operator is used. As you would guess, a double value
results. Thus, 2*2 evaluates to int 4, but 2*2.0 evaluates to double 4.0.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 120

The reason the int is automatically converted to a double and not vice versa is that the
range of doubles is so much greater than that of ints. There are many doubles which
simply cannot be represented as ints, but every int can be represented exactly as a double.

ii) Expressions
All information in a Java program has a type. Information exists in both variables and
expressions. Like a variable, an expression has a type and a value; unlike a variable, it
does not have a name. Expressions are not declared and sometimes it is not obvious what
their type is.

In the BNF thus far, expressions have only appeared in two places: on the right of the
assignment operator and as actual parameters. That means that anything appearing either
on the right of an assignment operator or as an actual parameter must be an expression
syntactically.

Examples:
Here are some int expressions.
1. 17
2. 1 + 1
3. 1 + 2 * 3
4. 1 + 2 - 3 / 4 * 5
5. (1 + 2 -3/4) * 5
The values are: 17, 2, 7, 3, and 15. The first three should be obvious. The value of 17 is
17, 1+1=2, and everyone knows that you do multiplication before addition. The values of
the fourth hinges on how integer division works. This is because the / operator does
integer division, discarding any remainder. This can be the cause of very subtle bugs, as
will be seen below. So 3/4 = 0, 0*5=0, 1+2=3, and 3-0=0.

The fifth expression uses parentheses to cause the multiplication to happen last, so
(3+0)*5=15.

a) Precedence of operators
In an expression with multiple operators, the question arises, "Which operator is applied
first?". In other words, which operation precedes which others? You are already familiar
with precedence, since you know that 1 + 2 * 3 is 7. In ordinary arithmetic multiplication

CS231 Spring 5 Page 121

Simply Java Chapter 5: Towards consistent classes

precedes addition. In computing, one says, "* has higher precedence than +"; it means
just what you expect, that without parentheses, multiplication happens before addition.

The safest rule is, if you’re worried that precedence is a problem, use parentheses.

b) BNF for expressions

You may have noticed that the BNF for expression was missing; or not, whatever. Here it
is. Notice that this is a recursive definition (if you’ve forgotten the term recursive, see

"What classes will we need? What will they do?" on page 40); it can generate arbitrarily

Table 5.2: Precedence of operators

Higher precedence operators are higher in the table

. -- the message dot

(cast)

!, unary -

*, /, %, &&

+, -, ||

<, >, <=, >=, ==

BNF 5.12 expression

<expression> ::= <constant>

 | <variable>

 | <message expression>

 | <expression> <binary operator> <expression>

 | (<expression>)

 | <unary operator> <expression>

A recursive BNF production.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 122

complex expressions. Binary and unary operators take two and one expressions as

operands, respectively . Notice that expressions may be arbitrarily complex.

c) Expressions compatible with a type

In an assignment statement, the expression on the right of the assignment operator must
be compatible with the variable on the left. The same is true of actual and corresponding
formal parameters.

The simplest form of compatibility is identity. I.e. an int expression is compatible with an
int variable -- you can always assign the value of an expression to a variable of the same
type.

For now, all you need to know is that expressions of type int are compatible with double
variables, so it is legal to assign an int value to a double variable (or to use an int
expression as an actual parameter corresponding to a double formal parameter), but the
reverse is not true (See "Mixed expressions" on page 119). Expressions of type
completely unrelated to a variable’s type can never be compatible; you can never assign a
char or a String to an int, or an int or a double to a String. But, sometimes you can
convert them by hand.

d) Converting one type to another

There are a number of different techniques to convert one type to and another when they
are incompatible.

BNF 5.13 binary operators

<binary operator> ::= + | - | * | / | % | && | || | < | > | <= | >= | == | !=

&& is and || is or; these are boolean operators
<, >, <=, >=, ==, != are relational operators, they compare their operands and
yield a boolean expression. The operator == is equals, != is not equals

BNF 5.14 unary operators

<unary operator> ::= - | !

- is minus, as in -17, ! is not, as in !(x>100)

CS231 Spring 5 Page 123

Simply Java Chapter 5: Towards consistent classes

• String to int

When input comes from a TextField it is always a String (the signature of getText() is
public String getText(). The method that converts a String to an int is
Integer.parseInt(String). It was illustrated in "When the user hits enter, get the withdrawal
amount" on page 44. There is a similar method for doubles.

• Object to String

Any Object can be converted to a String using toString() -- but, you already knew that!

• int to String

An int (or any primitive type) can be converted to a String by concatenating it to the
empty String, "". Like this ""+17 becomes "17".

• Casting

It is possible, in some situations, to force an expression to be a particular type. When you
cast an expression, you are essentially saying to the compiler, "I know more than you; do
what I say here!". The next section illustrates casting.

e) An example - random Circles at random locations

Let’s say you decide to create a bunch of Circles at random locations and sizes and
display them. There is a random number generator that you can access by saying
Math.random() -- it returns a random number in the interval [0,1) whose type is
double. To place a Circle at random requires random x and y values. To make it a random
size requires a random radius value. Assume you want Circles with centers in a square
500 pixels on a side with radii up to 200 pixels; then you would need two random ints
between 0 and 499, and one between 1 and 200. Since random() provides doubles in [0,1)
you need to map from that small interval to the larger ones. The best way to do that is
with a method (so as not to have to write the conversion code over and over - and if it
turns out to have a bug, you will only have to fix it one place... plus, it might be useful
later).

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 124

It is easy to perform this mapping, simply multiply. 500*0 = 0 and any number < 1 *500
is less than 500. So the method might look like Code Example 5.15.The only problem is,

that when you multiply a double by an int you get a double. Casting a double as an int
simply truncates anything after the decimal point, so the obvious solution is to cast that
expression as an int, see Code Example 5.16. This compiles, but always returns zero. The

way to understand why is to realize that *, (int), and the dot after Math, are all operators
and will be applied in the order of precedence. So, first the random() message will be
sent, returning a value in [0,1), then the cast, (int) will be applied, converting the value to
an int 0 (through truncation), finally the multiplication will result in 0.

Code Example 5.15

1 int rand(int max) {
2 return Math.random() * max;
3 }

 A method to return an int between the parameter, max, and 0 -- a type error.
This method will not compile because the expression has type double, but the method heading

declares the return type as int

Code Example 5.16

1 int rand(int max) {
2 return (int) Math.random() * max;
3 }

 int rand() with a cast to int -- a precedence error.
Now this method compiles, but always returns 0, because the precedence of a cast is higher

than anything except the message dot.

CS231 Spring 5 Page 125

Simply Java Chapter 5: Towards consistent classes

As always, the way to fix precedence problems is with parentheses, as shown in Code
Example 5.17. Insert this method into your revised EyeApplet class, and replace the body

of paint() with the line:
 (new Circle(rand(500), rand(500), rand(200)).paint(g);

This will draw a different Circle each time you resize, or drag the window, or push a
button in the Applet. Try it. When it works, make 5 copies of that line as the body of
paint() and execute that.

f) Random FilledCircles

If you feel like playing a bit more before continuing on with this endless progression of
detail, try this. Create and display FilledCircles instead of Circles. The FilledCircle
constructor requires a fourth parameter, of type Color. To generate a random Color,
simply give it three random values in the range [0,255] as parameters, as shown in Code
Example 5.18. Add this method to your EyeApplet.

Then, modify paint() so it contains:
 (new FilledCircle(rand(500), rand(500), rand(50), randColor())).paint(g);
 as many times as you want random FilledCircles displayed.

Code Example 5.17

1 int rand(int max) {
2 return (int) (Math.random() * max);
3 }

 Parentheses override precedence for a correct int rand()
The parentheses cause the multiplication to happen before the cast, so everything is copacetic.

Code Example 5.18

1 Color randColor() {
2 return new Color(rand(256), rand(256), rand(256));
3 }

 randColor() returns a random Color
Creates and returns a color with random RGB values between 0 and 255.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 126

If you wanted 20 FilledCircles, you could copy that line 20 times; or, you could write this
for loop:

The details of this loop will be explained in Chapter 8, but for now just think of it as
"abracadabra". Try it with 100 FilledCircles (yes, change the 20 to 100). Or 1000. Does it
slow down much?

iii) Variables II (varieties and scope)
There are five different varieties of variables. These include instance variables, class
variables, parameters, method variables and loop variables. These will be addressed in
order of how often they have appeared in this text so far. They differ in where they are
stored, how they are initialized, how long they exist, and where they are visible. This last
is referred to as their scope.

• instance variables

By far the most common variables you have seen so far, and will encounter in object
programming are instance variables. See "Variables I (state)" on page 98 for details. They
are declared outside of any method and are visible everywhere in the class. They may
include an = <expression>, to initialize them, but if not, they are initialed to zero when
the instance is created (before the constructor is executed).

• local variables: parameters, method variables, and for loop variables

There are three kinds of local variables. Unlike instance variables, their scope is the
method or loop in which they are declared, and only exist while it is being executed.

Formal parameters have the form of variable declarations, namely <type> <identifier>.
They are visible in the method they exist in. Their values are provided as part of
parameter linkage when the method is invoked, and cannot generally be determined at
compile-time. There are many examples in the text so far and details are in
"Parameters (actual, formal, linkage)" on page 104.

Code Example 5.19

1 for (int i=0; i<20; i++)
2 (new FilledCircle(rand(500), rand(500), rand(50), randColor())).paint(g);

 A loop to create and display 20 random FilledCircles

CS231 Spring 5 Page 127

Simply Java Chapter 5: Towards consistent classes

Method variables are declared within the body of a method. They have appeared in Code
Example 3.11 on page 57 (Bank theBank), Code Example 5.4 on page 104 (Account
myAccount), and Code Example 5.5 on page 108 (String returnMe). They exist only in
the body of the method and must be initialized when they are declared.

The only for loop variable was in Code Example 5.19 on page 126, (int i). Loop variables
only exist within the loop they are declared in, and must be initialized when declared.

• class variables

So far, no class variables have been used. They are not used very much in elementary
programming; some people program for years and never use them. They are useful in
certain situations though and you might run into one somewhere. Syntactically, class
variables are exactly like instance variables, except they have the keyword static in
front. Class variables do not belong to any instance, but instead to the class -- hence the
name. They are used when there is information that must be accessible from every
instance, but which does not belong to the instances. A class variable exists as long as the
program is running and is visible from every instance.

• Example - Serial numbers

Some people, when they first start object programming feel somewhat uncomfortable
about having many nearly identical objects of the same class, and would like to be able to
keep track of which is which. One easy way to distinguish between nearly identical
objects in the world, is to attach a serial number to each one. The first one is number 1,
the second number 2, and etc. The same may be done with Java objects. Here’s how.

Each object must keep track of its serial number, so there must be an instance variable;
e.g. int serialNumber; -- this will be set to 1 for the first object instantiated, 2 for the

Table 5.3: Variables - types, scopes and initialization

Variable type Scope Initialization

instance variable entire class auto, to 0 or by assign-
ment

formal parameter body of method by parameter linkage

method variable body of method must assign initial value

loop variable body of loop must assign initial value

class variable all instances like instance

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 128

second, etc. There must also be a class variable to keep track of the next serial number to
be assigned; like this: static int nextSerialNumber=1;

Then, in the default constructor, there must be one line added.
 serialNumber = nextSerialNumber++;

This is shorthand for
 serialNumber = nextSerialNumber;
 nextSerialNumber = nextSerialNumber + 1;

The first line assigns the current value of the class variable nextSerialNumber (1 the first
time) to the instance variable serialNumber. The second line increments the class variable
nextSerialNumber.
That’s all it takes. To see that it works add this line as the second in toString():
 returnMe += " my serial number is: " + serialNumber;
Modify the Circle or Account class (use the one with the main() method to make your
task simple), and test to see that this works.

iv) Conventions
There are a number of conventions which are not required by the compiler, but that make
it much easier to program. These are entirely arbitrary, but are pretty much standard in
the industry.

a) Naming conventions
Identifiers should convey information; they should tell what they are or what they do.
This includes class names, method names and variable names. Typically, variables are
nouns, methods are verbs. Accessor names start with get or set and then the variable
being accessed, e.g. int balance; getBalance() and setBalance().

b) Case conventions

Class names begin with upper-case letters. Instance names begin with lower-case letters.
The second and any subsequent English word in an identifier starts with an upper-case
letter. Constants are all upper-case.

c) The importance of good names

Descriptive names can make the difference between being able to debug your program
and not. The reason is simple, cognitive capacity. People can only keep in mind around 5
things at once. If you name your variables that mean balance and radius, Frank and
Ernestine, then you are squandering 2 of your precious 5 on remembering which means

CS231 Spring 5 Page 129

Simply Java Chapter 5: Towards consistent classes

which. When the program is extremely simple, this is not a big problem, but if it is just at
the limit of the programmer’s capacity, this could lead to disaster.

G. Recapitulation
As mentioned in the first chapter ("Learning to program" on page 13) there are a few
dozen concepts that must be understood, at least vaguely, before a person can program in
Java. Most of them have been covered in this chapter (if you’re feeling a bit
overwhelmed, please be patient, it gets easier). Here’s a rough list; this would be suitable
to read every night after programming until it is all very obvious. It appears, first as a list,
then with explanations. When you can remember the explanations by looking at the list,
then you can stop looking at it.

i) Information
a) types
b) values
c) variables
d) expressions

ii) Language Elements
a) classes

variables
methods
constructors

b) objects
c) statements
d) identifiers
e) methods/messages
 signatures

parameters (formal/actual)
parameter linkages

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 130

f) syntax
g) semantics

iii) Process
a) editing
b) compilation
c) execution
d) debugging
e) prototyping

Here’s that same list with some explanatory text.

iv) Information

a) types
All information in a Java program has a type. There are primitive types, built-in classes
and user-defined classes. It is possible to change types by casting.

b) values

Expressions have values. To compute the value of an expression it is evaluated. Every
type has a range of legal values.

c) variables

Variables hold information. Every variable has a name, a type and a value. A variable
only holds one value at a time. There are five different kinds of variables: instance,
parameter, method, loop, and class.

d) expressions

Variables and constants may be combined in arbitrarily complex fashion to form an
expression. Syntactically, expressions appear to the right of assignment operators and as
actual parameters (Thus far. Later on you will see them other places.).

CS231 Spring 5 Page 131

Simply Java Chapter 5: Towards consistent classes

v) Language Elements

a) classes
A class is a template for objects of that type. It includes both variables and methods.
Every object of that type has all the instance variables and can use all the methods
declared in it.

• variables

Every instance of a class has its own copy of each instance variable. All instances share
access to class variables which are stored in the class itself (interestingly, classes are also
objects, they are instances of the class Class).

• methods

Methods have a heading and a body. The heading specifies the type, name and
parameters of the method. The method body is a single block statement, which is a pair of
{}s around a series of statements. To execute the method, Java executes each of those
statements in order.

• constructors

Constructors are typeless methods with the same name as the class that are executed
when a new object of that class is constructed.

b) objects

Objects (also called instances) of a particular class are created by saying
new ClassName();

This is referred to as instantiation. When an object is instantiated, the constructor
corresponding to the signature of the new message is executed.

c) statements

Statements are what accomplish most of the action when a program executes. So far these
statements have been presented: assignment statement, return statement, block statement,
and message statement.

d) identifiers

Identifiers are Java names. They start with a letter, and are composed only of letters,
digits and underscores.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 132

e) methods/messages

When you send a message to an object, it invokes the method in that class with the same
signature. First it performs the parameter linkage, then executes the method body.

• signatures

 The signature of a method is it’s access type, return type, name and parameter types.

• parameters (formal/actual)

The parameter in the method declaration is the formal parameter, the one in the message
is the actual parameter.

• parameter linkages

Each actual parameter is evaluated and its value copied to the corresponding formal
parameter

f) syntax

The syntax of Java is defined by a set of BNF productions. Any source code not matching
this grammar symbol for symbol is deemed to have compiler errors.

g) semantics

The semantics of a statement is the action it performs when it is executed. An
experienced programmer has internalized the semantics of enough of the constructs of the
language that solving routine problems is easy.

vi) Process

a) editing
Editing is when the programmer is inputting or changing source code (classes).

b) compilation

Compilation is when the compiler is checking the syntax of a class. Errors at this stage
are compile-time errors and are either lexical or grammatical. Lexical errors happen when
the compiler does not know what an identifier means; the most common causes are
forgetting to declare variables, or typos. Grammatical errors occur when the syntax of the
source code does not match the BNF description of the language precisely.

CS231 Spring 5 Page 133

Simply Java Chapter 5: Towards consistent classes

After verifying the syntax of a class, the compiler converts the source code to byte code.
Assuming the source code is in a file called Foo.java, the byte code will be put in a file
called Foo.class in that same directory.

c) execution

To execute a program, the byte code is interpreted by the Java Virtual Machine. This is
when the work of the programmer comes to fruition. The semantics of the various
methods are carried out to achieve some desired result. Errors here are run-time errors,
and appear as Exceptions.

d) debugging

Debugging is the process of removing errors from a program. It is the most time
consuming and frustrating aspect of programming. Any nontrivial program has multiple
errors. Only novice programmer imagine that one can program without bugs. Like
dropping the balls when juggling; it happens. One important skill in programming is
learning to write code that is easy to debug.

e) prototyping

Building simple prototypes and adding functionality as the previous prototype works is
perhaps the most important way to make debugging simple; there are simply less places
to look for the bugs.

H. Conclusion
Programming in Java is accomplished by writing classes. Classes define the information
objects of that type can store (by declaring variables) and the actions those objects can
carry out (by declaring methods). Methods have a heading and a body; the former defines
the signature of the method, the latter defines its action.

Although there are many programming constructs and statements, the only three that alter
the state of the computation, the only three that really do anything, are input, output, and
assignment; all the others are organizational, organizing both the structure of the program
and which of the big three are executed in what order and how many times.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 134

The standard set of methods that all classes should have, including constructors,
accessors and toString(); are written automatically by the ClassMaker. Any others you
will have to write by hand.

This chapter presented many of the details of Java programming. If it succeeded, you, the
reader, are beginning to understand the interplay of the two dozen odd concepts that
make up most of programming. If not, my apologies; with luck, perhaps after a bit more
practice this stuff will fall together for you.

I. End of chapter material

i) New terms in this chapter
actual parameters - parameters in the parentheses of a message (may be any expression of

the appropriate type) 99
assignment operator - a single equals sign 91
BNF - Backus Naur Form. A metalanguage for describing context free grammars. Com-

monly used to describe the syntax of a programming language. 88
compile-time - during compilation, compare with execute-time 121
formal parameters - parameters defined in a method heading (each must have a type and a

name) 99
instance variable - a variable declared outside of any method, a copy is created for each in-

stance 95
Math.random() - returns a random double in the range [0,1) 118
parameter linkage - when a message is sent with parameter, the values of the actual param-

eters are copied to the corresponding formal parameters 101
precedence - in an expression with multiple operators, which operator precedes which (*

precedes +) 116
scope - the portion of a program where a construct is visible (or defined) 120
Semantics - meaning, or action. 88
shadow - to hide a variable, by being named the same thing in a more local scope; most

often happens with parameters 111
static - modifier that creates class variables or methods instead of instance variables or

methods 121
Syntax - grammar, or form. 88

ii) Review questions
 5.1 Why are initializing constructors useful?
 5.2 What is this?

CS231 Spring 5 Page 135

Simply Java Chapter 5: Towards consistent classes

 5.3 What is this()?
 5.4 Why are good names important?
 5.5 What will this output?
 byte x=127;
 x++;
 System.out.println("x=" + x);

 5.6 Name 4 varieties of variables. What are their scopes?
 5.7 What does it mean for one variable to shadow another?
 5.8 What is the type and value of:

17
3.141
0.1*30
(int) 0.1*33
(int) (0.1*33)
2+2
"2+2"
"2"+"2"
Integer.parseInt("2"+"2");
13/4
13%4
""
""+13%4
"(int) 1.414"

 5.9 What language does this BNF generate?

<S> ::= <A>

<A> ::= a | a <A>

 ::= b

 5.10 What do the symbols: ::=, |, [], <>, [x]* mean in BNF

iii) Programming exercises
 5.11 You can convert an int to a String by pasting it onto "". Try out this by
System.out.println("" + 17);

You should see 17 print. Now try
System.out.println("" + 17 + 17);

What goes wrong? Hint: you can fix it with parentheses.

Simply Java Chapter 5: Towards consistent classes

CS231 Spring 5 Page 136

CS231 Spring 5 Page 137

Chapter 6: Software reuse

A. Introduction
Software is a new invention. It is nearly pure information, like a story, or DNA. Fortunes
have been made, and will be made writing and selling software. Creating and distributing
software as a commodity is very different from growing and selling soybeans, or building
and shipping refrigerators. Once it is written, software can be distributed at low cost on
CDs or at almost no cost over the web; this makes enormous profits possible.

A peculiarity of software is that new releases, revisions and updates are common. The
extent to which the old software can be reused determines how much work these
revisions entail. If even minor changes necessitate reworking large bodies of code, then
they are difficult and expensive. On the other hand, if a new version of a product can be
produced without extensive rewriting, it is simpler and cheaper. Thus, the possibility of
reusing software without reworking it or even looking at it would be a tremendous
advantage.

Object oriented programming makes possible software reuse by inheritance and
composition. These techniques were introduced in Chapter 5 and will be revisited in more
detail here.

B. Inheritance

i) The power of inheritance
Inheritance gives the programmer tremendous power. Once a class is written and
debugged, another class can modify or enhance it without the programmer having to
worry about destroying its functionality and often without even knowing what its code
looks like.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 138

For example, every user Applet class extends java.applet.Applet. The first Applet you
wrote (Code Example 2.5 on page 32) had just an empty block following the heading,

and it worked just fine (although it didn’t do much). This is because it inherited all the
functionality of java.applet.Applet. Here, RobotGreeter is said to be a subclass of
java.applet.Applet, and java.applet.Applet is the superclass of RobotGreeter.

ii) The Object class
At the top of the Java class hierarchy sits the Object class. Every Java class is a
descendant of Object. All of the methods and variables in Object are defined in every
object of any type. There are not very many methods defined in Object (you can check
the documentation if you are curious -- http://java.sun.com/j2se/1.4.2/docs/api/); the only
one we will address here is toString().

Every user-defined class extends some class. If there is no extends keyword after the
class name, the compiler inserts extends Object automatically.

iii) The mechanics of message sending
By now you are familiar with sending messages to objects. Perhaps it has begun to seem
straightforward and natural; if a class has a method defined, you can send the associated
message to objects of that type. If you try to send a message to an object whose class
does not have the associated method defined, then a compiler error is generated and your

Code Example 6.1

1 public class RobotGreeter extends java.applet.Applet {}

Code Example 2.5 (revisited)

CS231 Spring 5 Page 139

Simply Java Chapter 6: Software reuse

code will not run. But, consider the FilledCircle class in Code Example 6.2 and the code

in Code Example 6.3 where iris, a FilledCircle, is being sent setX(). There is no setX()

method declared in the FilledCircle class, so why does this code compile? For that matter,
do you see an int x variable in FilledCircle? How can you set what doesn’t exist? You
probably already know the answer, if not, look at line 2 in Code Example 6.2.

At runtime, when an object is sent a message, if its class declares the associated method,
the Java Virtual Machine (VM) executes that method. If its class does not declare that

Code Example 6.2

1 import java.awt.*;
2 public class FilledCircle extends Circle {
3 protected Color myColor = new Color(100,0,100);
4
5 /** Creates a new instance of FilledCircle */
6 public FilledCircle() {}
7
8 public void setColor(Color c) {
9 myColor = c;
10 }
11
12 public void paint(Graphics g) {
13 g.setColor(myColor);
14 g.fillOval(x-radius, y-radius, radius*2, radius*2);
15 }
16}

From Code Example 4.11 on page 82
The complete FilledCircle class.

Code Example 6.3

1 public void moveLeft() {
2 iris.setX(iris.getX()-2);
3 pupil.setX(iris.getX());
4 }

From Code Example 4.13 on page 84
moveLeft() moves goth the iris and pupil (two FilledCircles) left two pixels.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 140

method, the VM checks its superclass; if the VM finds it there, it executes it, if not, the
search continues up the class hierarchy. When it reaches the Object class; if the method is
still not found there, a NoSuchMethodException is generated (you can read about
Exceptions in "Exceptions" on page 350).

The FilledCircle class extends the user-defined Circle class, therefore FilledCircle
inherits the x, y, and radius variables plus their accessors from the Circle class. The
compiler thus allows setX() to be sent to iris because it was defined in iris’s superclass.

It is often useful to have a picture of the class hierarchy. It aids memory and facilitates

communication. Figure 6.1 shows two common styles of class diagram for FilledCircle.

Figure 6.1

Booch and UML diagrams
Two styles of diagram (Booch on the left, UML on the right). Both show that FilledCircle

extends Circle which extends object.

CS231 Spring 5 Page 141

Simply Java Chapter 6: Software reuse

You can send any object toString() and be confident it will work, why?

iv) This is super!
Sometimes, in a constructor, you want to invoke the superclass’s constructor. The most
common time is in an initializing constructor with a number of parameters, some of
which are for variables in the superclass. Just as this() invokes the default constructor
for this class (see "this()" on page 116), super() invokes the superclass constructor.

For example, if you wanted to write an initializing constructor for the four variables in
FilledCircle and there was already one for x, y, and radius in Circle, you could write the
constructor in Code Example 6.4. The superclass initializes its three variables, then the

color is set locally. Invoking super() must be the first thing in the constructor.

C. Composition
Having one thing composed of several others is common and familiar in everyday life. A
student’s daily schedule is composed of classes, meetings and meals. A face is composed
of various features. Generally, we experience objects in the world as sets of features that
travel around together. Containment is also familiar in the world. Dressers contain clothes
of various kinds. Toolboxes are used to hold various tools. A backpack may contain
books, pens, a water-bottle and a computer.

Composition in object programming shares features from both composite objects and
containers in the world. It refers to a class being made up of several objects of other
classes. So a composite object may be thought of as a container for other objects or it
may be thought of as being the combination of those objects -- either way can be useful
in different contexts.

Code Example 6.4

1 public FilledCircle(int x, int y, int r, Color c) {
2 super(x,y,r);
3 setColor(c);
4 }

Initializing constructor for FilledCircle using super()
Line 2: Invoke Circle’s initializing constructor to set x, y, and radius.
Line 3: Set the color (!).

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 142

The Eye class was composed of an iris and a pupil, both FilledCircles. Figure 6.2 shows
the class diagram for Eye, again in two different styles. In the Booch diagram, each cloud

represents a class. There are two kinds of arcs; arrows, representing inheritance, and lines
with a dot and an h representing composition. The class at the dotted end has or contains
instances of the other. The number at the other end indicates how many instances, by
default it is one. In the UML diagram, inheritance is also represented by an arrow, but
composition is represented by a horizontal arrow with a "has" label.

Figure 6.2

Booch and UML diagrams for Eye
Both show that an Eye extends Object and is composed of two FilledCircles which extend

Circle which extends object.

CS231 Spring 5 Page 143

Simply Java Chapter 6: Software reuse

To write a Face class, you might include two Eyes, a Nose, and a Mouth (once you wrote
Nose and Mouth). To display it you would display each component in a particular spatial
relationship to each other. You might write a Person class that included a Face, as well as
various other body parts. Then you could create a Scene involving several Persons.

Composition allows you to assemble multiple objects of various types into a container.
This is efficient and useful, as it allows you to group things and treat the ensemble as a
single thing, thus simplifying your thinking.

D. Composition Programming Example: Snowpeople

i) A description of the task
Here is the programming task for this chapter. Write a Java Applet that will display
several snowpeople of various sizes at various locations around the screen. To simulate
warm weather, make the snowfolk melt some each time the user pushes a button labelled
"warm sunny day". When a snowperson melts, increase the size of a gray puddle of
melted snow under it.

ii) Overall Design
Perhaps, given your experience with the Eye class, you feel that you know enough to
immediately start writing code. It would be fine to write a prototype SnowPerson class
immediately, that’s a reasonable approach. But, before writing very much of the detailed
code, it is important to think through the entire problem. What classes will you need?
How will they be related? Which will do what? Carefully designing code before writing
any can save many hours of frustrating debugging and redesign.

As always, the first questions in GUI object design are, "What will the GUI look like?",
and "What classes will be needed?". There is never one right answer to either question,
and after working on the implementation some you may realize the class structure or the
GUI you’ve chosen needs revision. Making considered choices could save a tremendous
amount of time. Aim first, then shoot.

a) The GUI
The interface for this problem is very simple. There is a single button that the user can
push to simulate one day of melting. The only output is to display the snowpeople. It
might be nice to draw some background for the snowpeople as well.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 144

b) Classes

In addition to the Applet class (which, as usual, will handle the GUI), we will definitely
need a SnowPerson class. We might also need a SnowBall and Puddle class, each of
which would reuse FilledCircle. Or perhaps the SnowPerson could just contain four
FilledCircles, named head, middle, base, and puddle.

c) How many classes should you have?

The right number of classes for a particular problem is somewhat ambiguous. It is
perhaps a matter of taste, and as the expression goes, "there’s no accounting for taste!".
For a large problem, having only one class would be too few; for a small problem, having
more than a handful would likely be too many. Let’s keep open the choice of whether to
have Puddle and Snowball classes for the present, until after considering some of the
details.

iii) SnowPerson Design
The description of the task left a number of details unspecified, including: How many
snowballs is a snowperson made of? What are their relative sizes? What color are they?
How much does a snowperson melt in one day? When it melts, how quickly does the
puddle grow? This lack of specificity forces the programmer to either make these
decisions arbitrarily, or request additional information. If someone had hired you to
produce a snowperson Applet, you would ask them if they preferred to specify those
things, or if you should make your own decisions. Imagine how upset everyone would be
if you made the decisions yourself, wrote all the code, delivered it, and your customer
had totally different expectations. Here, these decisions have been made arbitrarily. Feel
free to implement them differently.

a) How many? How big?
Let’s assume that a SnowPerson is composed of three white snowballs getting smaller as
they go up (as usual). Call them the base, the middle and the head. The exact ratio of
sizes is not important; let’s say the radius of the middle is 2/3 the radius of the bottom and
the head radius, 2/3 the middle. If you don’t like how this looks you can adjust it later.

b) Where do the three snowballs go?

Perhaps the most difficult decision is where to locate each of the snowballs. Recall that
FilledCircles keep track of the position of their centers. Assume the Applet will specify
where each SnowPerson goes using x and y-coordinates. Should that location be used for
the top of the head? Or the bottom of the base? Remember that the snowfolk are going to

CS231 Spring 5 Page 145

Simply Java Chapter 6: Software reuse

melt. If the location of a SnowPerson were the top of the head, as it melted, the base
would rise up into the air! That could be amusing, but is hardly how real snowpeople
behave. Thus, the location of a SnowPerson will be where the base touches the ground.

Given that decision, the positions of all three snowballs are fixed. The base is centered its
radius above its location. The middle is centered above that by the radius of the base plus
its own radius (see Figure 6.4 on page 151). The head, similarly. The details of
computing these positions are properly part of implementation.

c) Displaying the snowperson

To display a composite object, simply display each component (remember, the order of
display can be important). Assuming the three snowballs and the puddle each store their
color and position, this should be trivial.

d) Melting

This is another totally arbitrary decision. Let’s say, for simplicity, that the radius of the
base decreases by 10% each day and the ratios of the radii remains 2/3. For now, let’s say
the size of the puddle increases by 10 pixels each day.

iv) Implementation

a) Keeping things simple
Perhaps the most important skill a programmer learns is to keep every method simple. It
is possible to make a program work with huge, sprawling methods, just as it is possible to
build a vehicle out of spare parts, tape and baling wire -- but, it is almost never a good
idea, especially if you have far to go.

b) Strike out on your own?

It won’t be long before you start programming independently; coming up with your own
tasks to program, or, at least writing programs to complete programming assignments
without being provided with the answers. The sooner you can start implementing yourself
the better. If you are ready to jump into implementation by yourself already, do it! Try it
out and then come back here for hints. On the other hand, if it is still feeling a bit new and
strange and you’re not sure how to proceed, follow along here; but, try to do the things
the text recommends doing before looking at the answers. Dependence is good, but not
for too long.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 146

c) SnowBall? Puddle?

The decision about whether to create SnowBall and Puddle classes, or just go with four
FilledCircles must now be faced. If you decide to write SnowBall and Puddle, should
they extend FilledCircle, or contain a FilledCircle (those are the two techniques to reuse
software)? The answers to both those questions hinge on two things: what actions those
classes must implement in addition to FilledCircle, how complicated those actions are,
and how many modifications you anticipate making in the future. If this code will never
be used again, and there is only one additional method, and it is simple, then the answer
is use FilledCircle and get it done with. On the other hand, if there are many complex
methods needed and extensive modifications may be required, then the answer is write
subclasses.

The actions of Snowball and Puddle are shrink, grow, and paint(). If they extend
FilledCircle they will automatically inherit paint() from FilledCircle, as well as the
accessors for y and radius (which are needed for computing their new sizes and positions
during melting). If they wrap up a FilledCircle (i.e. if composition is used) they would
have to implement those accessors all over again. So, that choice is simple, inheritance is
more appropriate here.

Although it would be possible to implement a SnowPerson using four FilledCircles,
composing it of three SnowBalls and a Puddle will be more elegant and allow inheritance

CS231 Spring 5 Page 147

Simply Java Chapter 6: Software reuse

to be illustrated. Given that decision, the class structure for this program is illustrated in

Figure 6.3. Notice that a SnowPerson extends Object and has three SnowBalls and one
Puddle.

Figure 6.3

Booch diagram of classes
SnowPerson and Circle extend Object. A SnowPerson has 3 Snowballs and 1 Puddle. SnowBall

and Puddle extend FilledCircle which extends Circle.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 148

d) Implementation plan

Here’s a series of tasks that will lead to a working program. The rest of this section will
detail how to implement them.

1. Create a new directory to store the code for this project
2. Create a new project; mount that directory, and add it to the project.
3. Create a GUI Applet with a Button (for melting); hook up the Button
4. Create (or better, copy!) the Circle, and FilledCircle classes.
5. Create SnowBall, Puddle, and SnowPerson classes.
6. Add the chain of paint() methods so that repainting the Applet will repaint all the

FilledCircles of all the SnowPersons
7. Add the code to calculate the locations of the snowballs.
8. Add additional SnowPersons
9. Add the melting code.

Naturally, after every step, test your code if you can.

You already know how to do the first three steps; come back here after you’ve done that.
Feel free to look in the Appendices for instructions.

e) Creating the classes

• Circle and FilledCircle

Use the Classmaker for Circle, that way you will get an initializing constructor. The
FilledCircle class from your Eye project does almost everything it should, except it does
not have an initializing constructor, add the one in Code Example 6.4 on page 141.

• SnowBall

The SnowBall class extends FilledCircle. Since all SnowBalls are the same color, the
constructor does not need a color parameter. The only method the Snowball class needs is
melt(), which reduces the size by 10%; so the body of that method would be one line:
 setRadius(getRadius()*9/10);

It also needs an initializing constructor, with a single line:
 super(x,y,r,java.awt.Color.WHITE);

CS231 Spring 5 Page 149

Simply Java Chapter 6: Software reuse

• Puddle

Like SnowBall, Puddle extends FilledCircle. It needs the same initializing constructor
(but that sets the color to java.awt.Color.GRAY) and a grow() method to increase its size
by 10 pixels (setRadius(getRadius()+10);).

• SnowPerson

The SnowPerson class has three SnowBalls called base, middle and head. It will need an
initializing constructor that is passed the location and size. That constructor will then
calculate where and how big the three snowballs should be. For a first prototype let all
three be the same size, as in Code Example 6.5. This code centers the base at (x,y)

instead of putting the bottom of the base at (x,y). But, that’s good enough for now, you
can adjust the locations and sizes later (after the SnowPerson shows up on the screen).
First build the structure of the program, then refine it.

f) Adding the paint() chain

You will recall from Chapter 4, that to update the way an Applet looks we send it
repaint(), which causes paint(Graphics) to be sent to it. When the Applet gets the
paint() message, it should paint() all the things it displays. Add a public void
paint(Graphics) method to your Applet that simply sends paint(g) to the Snowperson
(see Code Example 4.6 on page 74). Before that will compile, you must have a
Snowperson to send the message to; so, declare and initialize a SnowPerson instance
variable in your Applet. That last instruction is completely explicit; if you don’t know
how to do it you might look back at "Variables I (state)" on page 98. A big part of
introductory programming expertise is familiarity with terms and concepts; the sooner

Code Example 6.5

1 public SnowPerson(int x, int y, int size) {
2 base = new SnowBall(x, y, size);
3 middle = new SnowBall(x, y-size, size);
4 head = new SnowBall(x, y-size*2, size);
5 }

Prototype initializing constuctor for SnowPerson
Line 2: Create the base snowball.
Line 3: Middle snowball is the same size, but higher.
Line 4: Head snowball is the same size, and higher still.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 150

you become familiar with them, the sooner programming will be easy. Perhaps you
would consider reading "Recapitulation" on page 129?

Test that code (note that this is step 6 of "Implementation plan" on page 148), then on to
making it look like a snowperson. If there are any problems, and the solutions don’t jump
right out at you, you might check "What could go wrong?" on page 154.

g) Letting the computer do the arithmetic

The SnowPerson constructor, when passed its size and position, must calculate how big
the middle and base are and where the three SnowBalls will go. Calculating the sizes is
very easy, see Code Example 6.6. Calculating the locations is more complicated.

Consider, by way of example, a SnowPerson of size 50, located at (200,300) (see Figure
6.4). All three SnowBalls have the same x-coordinate, but the y-coordinates must be
calculated. The center of the base will be 50 pixels above the bottom (since the radius is
50) at (200, 250), the top will be 50 pixels above that. The center of the middle SnowBall
will be 33 pixels above that (since 33 is 2/3 of 50) at (200,167). Similar reasoning puts

Code Example 6.6

1 private void adjustSnowBallSizes() {
2 middle.setRadius(base.getRadius()*2/3);
3 head.setRadius(middle.getRadius()*2/3);
4 }

Setting the sizes of the middle and head from the base.
Line 2: Set the radius of middle to 2/3 the radius of the base.
Line 3: Set the radius of head to 2/3 the radius of the middle.

CS231 Spring 5 Page 151

Simply Java Chapter 6: Software reuse

the center of the head at (200,112). If, more abstractly, the SnowPerson is at (x,y), and we

call the radii of the three SnowBalls baseR, middleR and headR, then we could write the
y-coordinate of the base as, y - baseR.
The y-coordinate of the middle is y - baseR*2 - middleR, or baseY - baseR - middleR. The
y-coordinate of the head is y-baseR*2-middleR*2-headR, or middleY-middleR-headR.

In Java, this looks like:
 base.setY(y-base.getRadius());
 middle.setY(y-base.getRadius()*2-middle.getRadius());
 head.setY(y-base.getRadius()*2-middle.getRadius()*2-head.getRadius());

Notice that the y variables in the various SnowBalls store the y-coordinates as they are
computed. An alternative computation is:
 base.setY(y-base.getRadius());
 middle.setY(base.gety()-base.getRadius()-middle.getRadius());

Figure 6.4

 Locations of the three SnowBalls
Assuming the base has a radius of 50 (baseR=50), and touches the ground at (200,300), the

coordinates of the centers of the three SnowBalls are indicated.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 152

 head.setY(middle.getY()-middle.getRadius()-head.getRadius());

Add whichever version you like better to your constructor, and check that it works. Note
that the y-coordinate should be stored in the SnowPerson (since when the base melts its
center must be moved down to its radius above where it touches the ground). You could
either type the three lines directly in the constructor, or put them in a method, called
something like adjustSnowBallLocations() and invoke that method from the constructor.
Which is better? It depends on two things. Grouping code together in a method with a
name helps to make obvious what it does. Also, if it turns out you will need to use that
code somewhere else in your program, then you can reuse a method instead of copying
and pasting the code. My completed constructor appears in Code Example 6.7.

h) Adding additional snowmen

Add at least two more SnowPersons to your scene. Make them different sizes. Test to
make sure they display correctly.

If you know how to that, do it. If not, read your Applet code (so it is in your mind). Look
carefully at each line that you have written. Think about what each does. Now decide
how to add another SnowPerson.

Stop. Don’t read on until you have puzzled over what to do. Okay... There are only two
changes needed. First, declare and instantiate another SnowPerson. Second, modify
paint() so that it also draws the new one. That’s it.

Code Example 6.7

1 public SnowPerson(int x, int y, int size) {
2 this.y = y;
3 base = new SnowBall(x, y-size, size);
4 middle = new SnowBall(x, y-size, size);
5 head = new SnowBall(x, y-size*2, size);
6 thePuddle = new Puddle(x,y,0);
7 adjustSnowBallSizes();
8 adjustSnowBallLocations();
9 }

Initializing constructor for SnowPerson.
Note that the computation of SnowBall sizes and locations is done in methods; these will be

reused in melt().

CS231 Spring 5 Page 153

Simply Java Chapter 6: Software reuse

i) Making the snowman melt

When the user pushes the melt button it must send the melt() message to however many
SnowPersons there are and then send repaint() (so you can see the changes). When a
SnowPerson gets a melt() message, it must both decrease the size of its SnowBalls (and
lower them) and increase the size of its Puddle. You can make these changes either
starting with the Applet and working down, or starting with SnowPerson and working up.
The text will take the latter approach.

There are a number of details that must be attended to to accomplish melting, but the
melt() method can be written without paying any attention to them as can be seen in
Code Example 6.8. Because the code to calculate the sizes of the middle and head, and

the code to calculate the locations of all three SnowBalls were written as methods, this
code is simple and easy to write.

Now add the code to send the melt() message to all the SnowPersons in the
ActionPerformed() method of the melt Button and test the melt method.

j) Displaying the Puddle

If you are simply following these instructions, then the Puddle is not being displayed yet.
Add the code to do that. All you need is to add puddle.paint(g) in z) in paint() in
SnowPerson. Does it matter where in that method it goes? Test the completed (!) code.

Congratulations! You have just completed a programming assignment more complex and
sophisticated than any introductory programming text could have imagined presenting in

Code Example 6.8

1 public void melt() {
2 base.melt();
3 adjustSnowBallSizes();
4 adjustSnowBallLocations();
5 thePuddle.grow();
6 }

melt() method for SnowPerson
There are four action that must take place: reduce the size of the base, calculate the new sizes of

the middle and head, calculate the new locations of there centers, and finally growing
the puddle. The four lines of this method do that, but the details are in the methods.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 154

a procedural language. You have used composition and inheritance to leverage already
written classes. You have implemented a paint() chain with a GUI interface and started
down the road to understanding object programming. Not everyone makes it this far.

E. Conclusion
In Java, all classes are organized into a hierarchy, called a tree, with the class Object at
the root. Every class has Object as an ancestor, i.e. Object is a superclass (although
possible at several removes) to every other class.

Inheritance and composition allow software to be reused. This is a tremendous advantage
over languages where software cannot be reused without extensive reworking. Given a
working FilledCircle class, writing SnowBall and Puddle only took a few lines of code.
Once you have working SnowBall and Puddle classes, the SnowPerson class becomes
simple.

In object languages, algorithmic complexity can be reduced by building an appropriate
class hierarchy. The more complex the code, the harder it is to understand. Complex code
is difficult to write correctly and more difficult to debug when there are errors. Simple
code is easy to write correctly and easier to debug when there are errors. And there are
always errors. Only neophyte programmers imagine their code will not have bugs.
Experienced programmers know better. Good programmers learn techniques to make it
easier to find the bugs that inevitably creep in. They develop good habits; these habits
allow them to succeed, even in difficult situations. Well thought out, coherent class
hierarchy and incremental implementation are techniques that allow programmers to
succeed.

F. End of chapter material

i) What could go wrong?

 Problem 6.1 -- the SnowPerson doesn’t appear on the screen.
 Possible causes: 1) paint() is never sent, 2) white FilledCircles on a white background

are invisible,
 Possible solutions: 1) send the paint message, 2) change the color of the SnowBalls or

the background

CS231 Spring 5 Page 155

Simply Java Chapter 6: Software reuse

 Problem 6.2 -- the SnowPerson never changes size
 Possible causes: 1) the melt Button actionPerformed() method is not written, 2) it does

not tell the SnowPerson to melt, 3) repaint() was not sent to the Applet
 Possible solutions: 1) Hook up the Button, 2) send the melt() message from the body of

ActionPerformed(), 3) send repaint() after melt().

 Problem 6.3 -- The SnowBalls overlap in the initial SnowPerson.
 Possible causes: Bad arithmetic in the SnowPerson constructor.
 Possible solutions: Fix the arithmetic.

 Problem 6.4 -- The SnowPerson is upsidedown!
 Possible causes: The programmer forgot that 0 in the y direction is the top of the screen.

The author made this mistake.
 Possible solutions: Redo the code for calculating where the middle and head go,

remembering which way is up!

 Problem 6.5 -- After melting, the middle and/or head are floating.
 Possible causes: The programmer forgot to add the code to adjust the position of the

middle and/or head after melting, the programmer remembered to adjust the
position, but forgot to send the message.

 Possible solutions: Add that code, invoke it.

 Problem 6.6 -- The original SnowPerson appears on the screen, but the second doesn’t.
 Possible causes: 1) It’s on top of the first SnowPerson. 2) paint() does not send it paint()
 Possible solutions: 1) give it different coordinates. 2) If you called it person2, add

person2.paint(g) to paint() in the Applet.

 Problem 6.7 -- The original SnowPerson melts, but the second doesn’t.
 Possible causes: the melt actionPerformed() method doesn’t send melt() to the second

one.
 Possible solutions: add the melt() message.

Simply Java Chapter 6: Software reuse

CS231 Spring 5 Page 156

ii) Review questions
 6.1 What are the two techniques to reuse classes?
 6.2 Write a SnowBall class that uses each technique to reuse FilledCircle. Which seems

better to you? Why?
 6.3 Does SnowBall use composition or inheritance?
 6.4 How do you know if you need more classes?
 6.5 How do you know if you have too many classes?
 6.6 Write down, one per line, every method invoked (including the values of the

parameters) when new SnowPerson(50, 200, 300) is executed.
 6.7 Write the melt() method for a SnowBall. Make it reduce the size of the SnowBall by

17%. Do you have to worry about which order the operators are applied?
 6.8 Describe in detail what happens when the SnowPerson sends melt() to the middle.

What object is this? What methods are invoked in what classes in what order?
 6.9 Describe in detail what happens when a user pushes the Melt for a day Button.

Include every method invoked and what class in resides in, in the correct order.
Pretty scary, eh?

iii) Programming exercises
 6.10 Send toString() to your Applet and System.out.println() what it returns. What does

it print?
 6.11 Put this line in initComponents in your Applet: System.out.println(this); How

do you explain why it works?
 6.12 Send toString() to an object that you know does not have it defined. What does

that print?
 6.13 Modify your applet to display 50 SnowPersons of random sizes at random

locations. Look back at the previous chapter for how to do this.
 6.14 Modify your code so that all of the SnowPersons move a few pixels toward the

center of the screen each time you push the button (in addition to melting).
 6.15 You may notice that the puddle of one SnowPerson covers up others. Modify the

display methods so that the puddles are all in the background. Hint: draw all the
puddles first -- i.e. add a paintPuddle() method and in the Applet first paint all the
Puddles, then the Snowballs. Hint2: you can calculate the change you should make to
the x-coordinate to move right or left (depending on if it is left or right of center)
arithmetically. There is a method, Math.abs(), that will return the absolute value of
an int.

CS231 Spring 5 Page 157

Chapter 7: Conditional statements

A. Introduction

i) Procedural programming and control structure
In the old procedural paradigm, writing a program was essentially the construction of an
algorithm (see "Definition of algorithm" on page 2). To design a program, the entire task
was broken down into a series of subtasks. To implement that design, subprograms (also
called subroutines) were written for each subtask. Typically there was a main loop which
repeatedly called various of the subroutines depending on conditions. Looping and
conditional statements were central to understanding and building programs, so they
always appeared early in programming texts; very little could be done without them.

ii) Object programming allows you to substitute class structure
By contrast, in the object paradigm presented here, writing a program involves designing
and implementing a class structure and a GUI. The finished program still implements an
algorithm, but its complexity is distributed across the various classes. In a properly
implemented object program, every class and method is simple. Once classes are written
they may be reused with a minimum of labor.

Thus far, the programs in this text have accomplished conditional and repeated action by
relying on the user and the event loop. The event loop is the mechanism built into the
Java VM to handle user events. If the user wanted to make several withdrawals, they
pushed the withdraw Button several times. To move the Eye left, they pressed the
moveLeft Button. Nonetheless, object programs do need looping and conditional
statements. This chapter and the next will introduce those two elements of control
structure.

B. Different actions depending on conditions - Conditional execu-
tion

i) The if statement -- do something or don't
Every program thus far has run the same way every time you ran it. But there are times
when a program needs to choose between actions to perform on the basis of the current

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 158

conditions. For instance, ATM machines usually won’t let you withdraw more money
than you have in your account. The one in Chapter 3 would pretend to give out money
even if the resulting balance was negative. The code for withdraw() is shown in Code
Example 7.1. An if statement can be used to prevent the Account from being overdrawn,

as in Code Example 7.2. An if statement starts with the word if, then a boolean

expression in parentheses, then a statement to execute if that expression evaluates to true.
This syntax is shown in BNF 7.1 . Remember that every legal if statement must match

this syntax exactly. The expression must be of type boolean (since only the values true
and false make sense here) and must be enclosed in ()s. Then there must be exactly one
statement (if there are several things you want to do in the if part you must enclose them
in {}s to transform them into a single block statement).

Code Example 7.1

1 public void withdraw(int amountToWithdraw) {
2 balance = balance - amountToWithdraw;
3 }

 The withdraw method for the Account class (from Code Example 3.4).

Code Example 7.2

1 public void withdraw(int amountToWithdraw) {
2 if (balance >= amountToWithdraw)
3 balance = balance - amountToWithdraw;
4 }

 A withdraw method that prevents overdraughts.
Lines 2-3: This if statement causes the assignment on line 3 to only occur if the balance is at

least as big as the amount to withdraw.

BNF 7.1 The if statement

<if stmt> ::= if (<boolean expression>) <stmt> [else <stmt>]

Semantics
1: Evaluate the <boolean expression>

2: If the value of the expression is true, execute the <stmt> after <expression>

3: If the value is false and there is an else part, execute the <stmt> in the else part.

CS231 Spring 5 Page 159

Simply Java Chapter 7: Conditional statements

ii) if-else -- do one thing or another
An if statement (without an else) is used when you want an action performed only under
certain conditions; it either executes the statement following the expression or does
nothing, depending on the value of the expression. By contrast, an if-else statement is
used to choose between two actions.

a) Example: preventing overdrafts while alerting the customer to the problem
If a person tries to withdraw more money than they have, the code in Code Example 7.2
would simply ignore them; which could be a bit unsettling. It might be better to let them
know something had gone wrong. I.e. either make the withdrawal, or print an error
message. That’s a choice between two things, so the construct to use is the if-else
statement, as in Code Example 7.3.

b) More complex boolean expressions

The boolean expression in an if statement may, like any expression, be arbitrarily
complex. Numbers may be compared by any of the relational operators (see BNF 5.13
"binary operators" on page 122). Boolean expressions may be conjoined with || (or), and
&& (and), and negated with ! (not).

Examples:
x>0 // true if x is >0
x>=0 && x<=100 // true if 0<=x<=100, i.e. a legal exam score
x==7 || x==11// true if x is 7 or 11, i.e. a winner in craps
x!=7 && x!=11 && x!=2 && x!=12//true if x is not 7, 11, 2, 3, or 12

Code Example 7.3

1 public void withdraw(int amountToWithdraw) {
2 if (balance >= amountToWithdraw)
3 balance = balance - amountToWithdraw;
4 else System.out.println("Oops! You don't have that much!");
5 }

 A withdraw method with an if-else statement.
Lines 4: The else part executes if amountToWithdraw > balance. Thus, if the user is trying to

withdraw more than they have, instead of ignoring them, it will print an error message.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 160

c) Truth tables

It is not always obvious exactly how to write boolean expressions, especially in
complicated situations. When in doubt, a heavy-handed, but inevitably correct technique
is to make a truth table. A truth table lists (or, as computer scientists like to say,
enumerates) all the possible combinations of values for the boolean clauses in a boolean
expression, along with the values of the expression under those conditions. For instance,
assume there are two boolean variables, p and q. Each may take on either the value true
(T), or false (F). Thus, for the pair, there are four possible values; TT, TF, FT, and FF.
These are shown in the leftmost two columns of Table 7.1. The rightmost column has the

values for not-p (!p); notice that they are just the opposite of the values for p. The values
for p&&q and p||q are shown in between; notice that || is inclusive-or, it includes the case
when both p and q are true. There is another or operator, exclusive-or, which is true just if
p or q is true, but not both. Java’s or is inclusive-or.

d) DeMorgan's Law

The ! operator seems straightforward, it turns true to false and false to true. But, there is a
peculiarity of applying ! to expressions including operators. The ! operator distributes
across parentheses, but it changes || to && and && to ||. See Table 7.2 for an example.

The fact that !(p&&q)=!p||!q and that !(p||q)=!p&&!q is called DeMorgan’s Law; forget it
and you will run into some nasty bugs.

Table 7.1: Truth table I

p q p && q p || q !p

T T T T F

T F F T F

F T F T T

F F F F T

Table 7.2: Truth table 2

p q p && q !(p && q) !p && !q !p || !q

T T T F F F

T F F T F T

F T F T F T

F F F T T T

CS231 Spring 5 Page 161

Simply Java Chapter 7: Conditional statements

e) Problem Solving technique - Analysis By Cases

It is very common in writing a program, and in problem solving in general, that one must
do different things in different cases. For instance, if you are running under a frisbee, if it
was thrown forehand, you expect it to tail off one way, if it was thrown backhand, the
other. If it was thrown as a hammer (up-side-down) you expect it to slow down rapidly
and tail off abruptly. In each case you do different things to catch it.

Analysis By Cases (ABC for short) is a problem solving technique designed especially
for problems with multiple cases.

Problem Solving Technique

Analysis By Cases (ABC)

Identify the various cases. For each, answer the following questions (making a
table if it is complicated): 1) How can you distinguish this case? 2) What action
do you wish to take in this case?

Once you have identified each case, decided how to distinguish each case from the
others, and what action to perform in each case, you are ready to write code. The
examples will illustrate the use of this technique.

f) Example - a robot bouncer

Imagine going to a club and encountering a robot bouncer. The job of the robot bouncer
is to only let in people who are at least 18 and to charge them each the cover charge.
Write a method that is passed a Person as a parameter, and that outputs as a message to
System.out what the robot would say to that person. Assume that the Person is passed as
a parameter and that a Person object has an age and a balance variable with standard
accessors.

To start with perhaps the best thing to do is write a method that only checks their age.
There are just two cases here.If the person’s age is greater than or equal to 18, it should
say "Welcome"; otherwise say "Sorry". That was the ABC method in a very simple
context; so simple it is, well, trivial. The two cases were under 18 and not. They are
distinguished by the age of the person. Etc. To write code for this requires an if-else

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 162

statement, as in Code Example 7.4. This would work fine if there were no cover charge to

collect. Next, one might reason that if the person is 18 or older, then the bouncer, instead
of waving them in, should check if they also have the cover charge. This is shown in
Code Example 7.5. There, line 3 in the previous example has been replaced by an if-else.

This is legal syntactically, since an if-else statement is a statement (check the BNF if you
have any doubts about this). This would work; but it is cleaner to use a compound

Code Example 7.4

1 void checkAge(Person aPerson)
2 if (aPerson.getAge() >= 18)
3 System.out.println("Right this way!");
4 else System.out.println("I'm sorry, you must be 18 to enter.");
5 }

Robot Bouncer that only checks age

Code Example 7.5

1 void checkAgeAndBalance(Person aPerson)
2 if (aPerson.getAge() >= 18)
3 if (aPerson.getBalance() > 5)
4 System.out.println("Right this way!");
5 else System.out.println("Sorry, you don't have the cash");
6 else System.out.println("I'm sorry, you must be 18 to enter.");
7 }

Robot Bouncer that checks age and balance
This example replaces line 3 in the previous with an if-else to check if they have the money to

pay the cover charge.

CS231 Spring 5 Page 163

Simply Java Chapter 7: Conditional statements

boolean expression to check both conditions at once. The person is allowed in if their age
and their balance meet certain conditions. This is illustrated in Code Example 7.6.

iii) cascaded if-elses -- do one of a number of things
Sometimes a program must do exactly one of a number of things. In that case you can
build a structure called a cascaded if-else by repeatedly using an if-else statement as the
statement following the else. The code in Code Example 7.5 could be rewritten into a
cascading if-else as shown in Code Example 7.7. The order that conditions are checked

may be important; careful thinking is required to make sure a it will work properly in
every case.

a) Example I - a robot aspirin bottle
Imagine that you are assigned to program an aspirin bottle to announce the correct dosage
given a person’s age. The dosage for aspirin is as follows: under 5, consult with a doctor;

Code Example 7.6

1 void checkAgeAndBalance2(Person aPerson)
2 if (aPerson.getAge() >= 18 && aPerson.getBalance > 5)
3 System.out.println("Right this way!");
4 else System.out.println("You must be 18 and have $5 to enter.");
5 }

Robot Bouncer that checks age and balance using &&

Code Example 7.7

1 void checkAgeAndBalance(Person aPerson)
2 if (aPerson.getAge() < 18)
3 System.out.println("I'm sorry, you must be 18 to enter.");
4 else if (aPerson.getBalance() > 5)
5 System.out.println("Right this way!");
6 else System.out.println("Sorry, you don't have the cash");
7 }

Robot Bouncer that checks age and balance using a cascaded if-else
This is exactly equivalent to Code Example 7.5 but is perhaps easier to read.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 164

6-12, one; 13-65, two; over 65, one. Code Example 7.8 shows this coded as a cascading

if-else. Each else-if clause executes only if the previous boolean expression was false
(because of the semantics of an if-else; see BNF 7.1 "The if statement" on page 158, if
you have any doubts about this. Once you get used to this notion, it will be very
obvious.). It is also possible to make this a bit shorter as shown in Code Example 7.9.

Which is the right way to structure this? There is not one clear answer. It depends on
which way makes sense to the programmer, and which way is clearer to a reader. It’s a
matter of style.

Code Example 7.8

1 if (age<6)
2 System.out.println("consult with your physician");
3 else if (age<13)
4 System.out.println("dosage=1");
5 else if (age<66)
6 System.out.println("dosage=2");
7 else System.out.println("dosage=1");
8

Cascaded if-else for aspirin dosage
Notice that in the else clause it must be the case that the previous condition was false

(otherwise the else clause would not execute). Thus if execution reaches line 3, age
must be >=6, and if execution reaches line 7, age>=66.

Code Example 7.9

1 if (age<6)
2 System.out.println("consult with your physician");
3 else if (age<13 || age>65)
4 System.out.println("dosage=1");
5 else System.out.println("dosage=2");
6

A slightly shorter cascaded if-else for aspirin dosage
Notice that if execution reaches line 5, !(age<13 || age>=65) must be true, in other words it

must be true that (age>=13 and age <=65).

CS231 Spring 5 Page 165

Simply Java Chapter 7: Conditional statements

b) Example II - reporting the score of a tennis game

Imagine you were assigned to build a robot tennis score announcer. In tennis, scores of
zero, one, two, three, and four, are announced as love, fifteen, thirty and forty. Assuming
the scores are kept as ints, your robot score announcer would be passed two ints. It must
convert the two int scores to the appropriate String. E.g. if the score were 3 for the server
and 2 for the receiver the correct output is forty-thirty. So a method that announced the
score might make use of a method that converted an int to a tennis score for both of the
scores, as in Code Example 7.10. In that case the task is to write and test the convert()

method. As usual, the simplest way to generate a test driver is to create a class with a

Code Example 7.10

1 void announceScore(int serverScore, int receiverScore) {
2 System.out.println(convert(serverScore) + "-" +
3 convert(receiverScore));
4 }

An announceScore method that uses convert twice.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 166

main() method (see NetbeansAppendix L on page 339), as in Code Example 7.11. The

convert() method is implemented using a cascaded if-else. It returns the String
representing the int it is passed. It does not use System.out.println to display because
that’s just for debugging or experimenting with code. Notice, on line 20, that an instance
of SingleScoreConverter is created and stored in a variable. Then the convert() messages
are sent to that object. Why is this?

Code Example 7.11

1 public class SingleScoreConverter {
2
3 /** Creates a new instance of ScoreAnnouncer */
4 public SingleScoreConverter() {
5 }
6
7 private String convert(int score) {
8 if (score==0)
9 return "love";
10 else if (score==1)
11 return "fifteen";
12 else if (score==2)
13 return "thirty";
14 else if (score==3)
15 return "forty";
16 else return "value out of range:" + score;
17 }
18
19 public static void main(String[] args) {
20 SingleScoreConverter theConverter = new SingleScoreConverter();
21
22 System.out.println("0=" + theConverter.convert(0));
23 System.out.println("1=" + theConverter.convert(1));
24 System.out.println("2=" + theConverter.convert(2));
25 System.out.println("3=" + theConverter.convert(3));
26 System.out.println("4=" + theConverter.convert(4));
27 }
28
29}

Testing convert.
The main() method tests all four legal values and one that is out of range. Thus, it tests all five

cases. It is important to test all the cases, otherwise, the one you didn’t test will be a
hard to find bug later.

CS231 Spring 5 Page 167

Simply Java Chapter 7: Conditional statements

c) Class methods

Almost every method you have seen so far has been an instance method. Instance
methods are invoked when a message is sent to an instance of a class; in the context of an
instance method, "this" is a reference to the object that the message was sent to. Class
methods, like class variables (see "class variables" on page 127), have the keyword static
in the heading; they are invoked when a message is sent to a class. Examples include:
int withdrawal = Integer.parseInt(textField1.getText()); from "When the user
hits enter, get the withdrawal amount" on page 44, and Thread.sleep(50); from
"step()" on page 218.

In the context of a class method, "this" is not declared (since the message was not sent to
an instance but instead to a class). Therefore, in the body of static void main(), we
can’t write convert(3). If we did, the compiler, knowing that the syntax of every message
statement is object.message(parameters), would append "this" on the front, to make,
this.convert(3). Then it would notice that "this" was not defined, and would protest.

So, even though we are inside a method in the SingleScoreConverter class, because it is a
static method, we cannot directly invoke instance methods in that class. Instead we must
instantiate SingleScoreConverter and send the messages to the instance.

iv) The switch statement
Another construct that selects between a number of possibilities is the switch statement.
The switch statement does not add any power to the cascaded if-else, but it is a little

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 168

neater and easier to read. The syntax is shown in BNF 7.2. This is the most complicated

statement in Java, it is inherited, so to speak, from C++ and old C. The convert method

BNF 7.2 The switch statement

<switch stmt> ::= switch (<enumerable expression>) {

 [<case clause>]*

 [default: <stmt>]

 }

<case clause> ::= case <constant>: [<statement>]*

Semantics
1: Evaluate the <enumerable expression>

2: If the value of the expression equals any of the <constant>s in the <case clauses>,
then execute the <stmt>s after that <constant>, and all the rest of the cases!

3: Otherwise execute the <stmt>s after default (if it appears).

CS231 Spring 5 Page 169

Simply Java Chapter 7: Conditional statements

from Code Example 7.11 is shown in Code Example 7.12, and is rewritten using a switch

statement in Code Example 7.13.

There are two difficulties with the switch statement. One is that it can only switch on
types with are enumerable. Enumerable types include int, and char. String and double
will not work. The other is that unless the statements in each case clause end with a break
or return statement, the following cases are all executed too! This can have surprising
(and sometimes upsetting) results.

Code Example 7.12

1 private String convert(int score) {
2 if (score==0)
3 return "love";
4 else if (score==1)
5 return "fifteen";
6 else if (score==2)
7 return "thirty";
8 else if (score==3)
9 return "forty";
10 else return "value out of range:" + score;
11 }

convert() using cascaded if-else

Code Example 7.13

1 private String convert(int score) {
2 switch (score) {
3 case 0: return "love";
4 case 1: return "fifteen";
5 case 2: return "thirty";
6 case 3: return "forty";
7 default: return "Value out of range: " + score;
8 } // switch
9 }
10

Convert() using switch.
This convert() uses a switch statement instead of a cascaded if-else. Switch adds no power,

but some people find it easier to read.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 170

C. Programming example: using the SingleScoreConverter class in
a tennis score keeping program

i) A description of the task
The programming task for this chapter is to write a Java Applet that will keep track of the
score in a tennis match. It should announce the score before each point, as well as the
winner of each game, set, and finally the match. The winner of a tennis match is, like in
Wimbledon Women’s Tennis, the first player to win two sets. A player wins a set if they
have won at least 6 games and are at least 2 games ahead (we will not handle tie-
breakers).

The same player serves for an entire tennis game. Before each point, the score is
announced, server’s score first. A game is won when one of the players has at least five
points and is at least two points ahead. If the score reaches 4-4, then, until the game is
decided, the score is announced as "deuce" for ties and "advantage server" or "advantage
receiver", depending on who is ahead by one.

Assume for now that the user will push one of two Buttons for each point, one if the
server gets the point, the other if the receiver gets the point.

ii) Design
Both the GUI and the classes must be designed.

a) GUI Design
The GUI is simple; two Buttons and somewhere to display the output. Either a TextField
or a TextArea could work for that. Which would be better? A TextField only has one line.
The user might want to be able to see the history of points, so a TextArea seems more
sensible.

Here’s how to create a prototype (although, odds are you are familiar with this by now).
1. Create a new GUI AWT Applet named TennisApplet (don’t forget to create a

directory to store all the files in first).
2. Add, rename, relabel, resize, connect and test two Buttons (don’t forget to set the

Layout to null so they don’t fill the screen).
3. Add, rename, and resize a TextArea - write in the TextArea on a Button press to

make sure everything is working so far.

CS231 Spring 5 Page 171

Simply Java Chapter 7: Conditional statements

b) Adding images to the GUI (optional)

You can make your GUI look much nicer if you add images to it. For instance, the
programmer that wrote this Applet to keep himself amused while writing this, copied
images of Maria Sharpova and Serena Williams, the two finalists in the 2004 Wimbledon
tournament. Then he added them to his Applet.

This requires:
1. Find and copy the images you want to have in your GUI (save them in the same

directory as the code; otherwise it won’t work).
2. Declare an Image variable for each one.

3. Read each image into its Image variable
4. Write a public void paint(Graphics) method to draw them.

Code Example 7.14

1 import java.awt.*;
2
3 public class TennisApplet extends java.applet.Applet {
4 Image mariaImage, serenaImage;
5
6 /** Initializes the applet TennisApplet */
7 public void init() {
8 initComponents();
9 // read from code directory
10 mariaImage = getImage(getCodeBase(), "maria.jpg");
11 serenaImage = getImage(getCodeBase(), "serena.jpg");
12 }
13
14 public void paint(Graphics g) {
15 g.drawImage(mariaImage, 250, 100, 150, 200, this);
16 g.drawImage(serenaImage, 50, 100, 150, 200, this);
17 }

The TennisApplet
Line 1: import java.awt.*, so it will know what Graphics and Image are
Line 4: Declare two Image variables
Lines 10-11: Read in the two images. The files must be named exactly maria.jpg and

serena.jpg, or else (of course) they will not be found.
Lines 14-17: Draw them. The four int parameters specify the rectangle to draw the image in; it

will be scaled to that size.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 172

Step 1 can be accomplished either by finding an image on the web, right-clicking it and
selecting "Save" (or some such), and then navigating to the directory your tennis code is
in. Or, you could copy them from
http://www.willamette.edu/~levenick/SimplyJava/images/
The code to accomplish steps 2-4 is in Code Example 7.14. You will need to arrange your
Buttons and TextArea so they are not on top of the Images. Or you can change the x,y
coordinates of the rectangles the Images are displayed in. Whatever works for you. If
you’ve forgotten Java rectangles, look back at "Basics of graphics in Java" on page 67.

c) Class Design

The class structure for this problem is not obvious at first glance. Clearly, there will be an
Applet. Maybe there should be an Announcer class that uses a SingleScoreConverter (see
Code Example 7.10 on page 165) which will announce the score before each point.

In a real tennis game, there are two players; so Game and Player are candidate classes.
Perhaps the Game could do the announcing, instead of having a separate Announcer
class. If we were going to extend the program to simulate tennis games (instead of
pushing a Button for each point), the Player class might include information about a
player’s attributes, like service consistency and speed, stamina, quickness, strength, or

CS231 Spring 5 Page 173

Simply Java Chapter 7: Conditional statements

accuracy. If the program kept track of the score for a single Game, the class structure

might look like Figure 7.1.

 To score a tennis match, something must keep track of the score in individual games, the
number of games each player has won in each set, and the number of sets each player has
won. At the beginning of each game, the score must be set to 0-0 and there must be code
to specify who is the server this game. At the beginning of each set, the games each

Figure 7.1

Booch diagram for one game of Tennis
The TennisApplet creates a Game which has a SingleScoreConverter and two Players.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 174

player has won must be set to zero as well. Plus, there must be code to decide when a
game, a set, and a match is over.

This various logic might be in one class, or distributed over several as in Figure 7.2. By
building Match, Set, and Game classes the initialization for each can be handled by
constructors.

Figure 7.2

Booch diagram for a tennis match
A Match has 2 Players and up to 3 Sets. A Set has n Games (at least 6).

CS231 Spring 5 Page 175

Simply Java Chapter 7: Conditional statements

iii) Making it smaller; let's just play a single game
If the description sounds like, and the Booch diagram looks like rather a lot to take on to
start, then you know what to do. Make it simpler! Build a prototype first. Figure 7.1, with
just a single game seems like a reasonable place to start.

a) Game and Player classes
So, create Player and Game classes; write the code and test it. The Player and Game
classes are most easily made with the classmaker. Add a Game variable in the Applet;
initialize it in init(), and send it messages when the user pushes the Buttons. The Game
should announce the score before each point. For now simply have it write to System.out.
Don’t worry about deuce scoring, or game ending. If you need a hint, see Code Example

7.15, but try to do it yourself as much as possible. Keep in mind that if you’ve added the
Image code, your TennisApplet will look slightly different.

Code Example 7.15

1 public class TennisApplet extends java.applet.Applet {
2 Game theGame;
3
4 /** Initializes the applet TennisApplet */
5 public void init() {
6 initComponents();
7 theGame = new Game(new Player("Serena"), new Player("Maria"));
8 }
9

 ...code deleted...
10
11 private void serButtonActionPerformed(java.awt.event.ActionEvent evt) {
12 theGame.serverScored();
13 }
14
15 private void recButtonActionPerformed(java.awt.event.ActionEvent evt) {
16 theGame.receiverScored();
17 }

The TennisApplet
Line 2: Declare the Game variable
Line 7: Instantiate a Game and store it.
Lines 12 and 16: When the user pushes a button send the appropriate message to the game.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 176

The Game class needs variables for each player’s score, and methods to increment each of
them when the user pushes that Button. It also needs a way to report the score. You
probably know how to write the Game class. My preliminary class is in Code Example
7.16. Compile and run these two classes; push Buttons until both scores are out of range.

Now it is time to add the code to handle deuce games and the game being over. But,
before doing that, it will be more efficient to replace the System.out.println in
announceScore() with code to write to the TextArea in the Applet. That println was for

Code Example 7.16

1 public class Game {
2 Player server, receiver;
3 int receiverScore, serverScore;
4 SingleScoreConverter theConverter;
5
6 /** Creates a new instance of Game */
7 public Game(Player server, Player receiver) {
8 this.server = server;
9 this.receiver = receiver;
10 theConverter = new SingleScoreConverter();
11 }
12
13 public void receiverScored() {
14 receiverScore++;
15 announceScore();
16 }
17
18 public void serverScored() {
19 serverScore++;
20 announceScore();
21 }
22
23 public void announceScore() {
24 System.out.println(theConverter.convert(serverScore) + "-"
25 + theConverter.convert(receiverScore));
26 }
27}

The Game class
Lines 2-4: Variables
Line 7-11: The constructor saves the two Players and instantiates the converter.
Lines 13-16 and 18-21: Increment the correct score and announce the new score.
Lines 23-26: Announce the score.

CS231 Spring 5 Page 177

Simply Java Chapter 7: Conditional statements

debugging, and the more printlns we add, the more we’ll have to change for the final
product.

b) Establishing the linkage back to the Applet's TextArea

If the Game had a reference to the TextArea back in the Applet, announceScore() could
write to it directly. I.e line 24 in Code Example 7.16 could be theTA.append() instead of
System.out.println(). But, where will Game get that reference from? This is a common
problem for beginning object programmers, but the solution can be deduced with a little
careful thought, assuming you have internalized the constructs covered thus far. Maybe
you know how already?

For theTA.append(...) to compile in the Game class, Game must have a variable of type
java.awt.TextArea named theTA. Easy enough, add: java.awt.TextArea theTA;

But, like all instance variables, it will be initialized to 0 which, for a reference is null, and
although now theTA.append(...) will compile, when it run it will generate the infamous
"Null pointer exception". So, the question becomes, how to set theTA to actually
reference theTA back in the Applet? The answer is very easy, once you realize it. How
does one set the value of a variable in one class from another? Use an accessor. The
ClassMaker will write it for you, or you could just type it; whatever is easier.

When should you set theTA in Game? Since it only needs to be done once, it should be
done in the constructor, or right after the constructor is invoked; see Code Example 7.17.

Make those changes and test your code.

Code Example 7.17

1 public void init() {
2 initComponents();
3 theGame = new Game(new Player("Serena"), new Player("Maria"));
4 theGame.setTheTA(theTA);
5 }

Establishing a reference back to the TextArea from theGame.
Line 4: set theTA in theGame to theTA (so that you can write in it from there).

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 178

c) Adding game over and deuce scoring code

The announceScore() method in Code Example 7.16 assumes that the game is still in
progress and the first deuce (40-40) has not been reached. It remains to write code to
detect and announce these other two cases, so that we can write announceScore(). This is
a perfect place to use the ABC method (see "Analysis By Cases (ABC)" on page 161). If
you wanted to make sure you’ve learned this technique, this would be a good time to
practice it. On the other hand, it is possible to delay making detailed decisions by
pretending there are methods that can distinguish between the cases. This is illustrated in
Code Example 7.18. The use of methods makes the code legible. This way the code is

simple and easy to understand; the details of whether the game is over or when we can
use simple scoring is hidden in the methods.

• The gameOver() method

How to write the gameOver() method? Oddly, most of it can be written syntactically. I.e.
you can do most of the work of writing it given what you know about syntax. Look at
line 2 in Code Example 7.18. From that you can infer the type of the gameOver() method.
Since its type is not void, it must return a value of that type. If you don’t know the type,
look back at the syntax of an if statement (BNF 7.1 "The if statement" on page 158).
With that in mind, a prototype of gameOver() can be written while ignoring the details of

Code Example 7.18

1 public void announceScore() {
2 if (gameOver())
3 announceGameOver();
4 else if (simpleScore())
5 announceSimpleScore();
6 else announceDeuceScore();
7 }

announceScore() with methods
There are three different cases for the score in tennis: game over, simple scoring, and deuce

scoring. This announceScore() distinguishes between them by using methods in a
cascaded if-else.

CS231 Spring 5 Page 179

Simply Java Chapter 7: Conditional statements

its logic; see Code Example 7.19. Now we must fill in the logic so that the method will

return true when the game is over.

• Writing simple code

Logically, the game is over if either player has at least 4 points and is at least 2 points
ahead. The first thing some programmers think to write is that the game is over

if (serverScore >= 4 && serverScore - receiverScore >=2 ||
 receiverScore >= 4 && receiverScore - serverScore >=2)

which is a mouthful. If you were going to write this, it would be good to enclose it in a
method, see Code Example 7.20, so that you could use it from various places. This code

is not wrong, but it is a bit complicated and difficult to read. It is more elegant to write

Code Example 7.19

1 public boolean gameOver() {
2 return false;
3 }

gameOver() prototype
The type of gameOver() must be boolean; otherwise it could not be used in the context
 if (gameOver()). Since it is not void, it must return a value. This prototype method would

compile and run, but would always (as you can see) return false.

Code Example 7.20

1 public boolean gameOver() {
2 return (serverScore >= 4 && serverScore - receiverScore >=2 ||
3 receiverScore >= 4 && receiverScore - serverScore >=2);
4 }

gameOver() first try
Logically, this method is correct, but compare it for simplicity and ease of understanding with

Code Example 7.21.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 180

the test more abstractly as in Code Example 7.21. This way is less prone to errors and

easier to modify when there are errors. This method is far superior in terms of debugging
and clarity, but it has a price; now there are two more methods to write.

• Combining nearly identical methods

One’s first impulse might be to simply copy and paste the logic from the two lines into
the two methods as in Code Example 7.22. But, note that the logic of those two methods

is identical, with the role of the variables serverScore and receiverScore reversed.
Anytime you discover nearly identical code like this you can combine it. The resulting

Code Example 7.21

1 public boolean gameOver() {
2 return serverWon() || receiverWon();
3 }

gameOver() made simple
A simple, easy to read version of gameOver().

Code Example 7.22

1 public boolean serverWon() {
2 return serverScore >= 4 && serverScore - receiverScore >=2;
3 }
4
5 public boolean receiverWon() {
6 return receiverScore >= 4 && receiverScore - serverScore >=2;
7 }

serverWon() and receiverWon(), take 1
Notice the logic is identical in the two methods with the variables serverScore and

receiverScore reversed.

CS231 Spring 5 Page 181

Simply Java Chapter 7: Conditional statements

methods are shown inCode Example 7.23. Both methods simply return the value of

winner, but with the actual parameters exchanged. This is a useful technique to learn; it
has the benefit of putting the decision of whether one player or the other has won the
game in the same code. This is useful because if the logic is wrong, it is only wrong in
one place, and can be fixed in one place. The downside is that now winner(int, int)
must be written; see Code Example 7.24. Notice that it returns true just if the first

parameter, x, is at least 4 and at least 2 more than the second, y. This concludes
gameOver(). Writing it produced several other methods, but they are all one line long.
Looking back at Code Example 7.18, it remains to write announceGameOver(),
simpleScore(), announceSimpleScore(), and announceDeuceScore().

• simpleScore()

As long as we have not reached the first deuce score, then we can use the simple score
announcer from before. The first deuce score is 3-3, so as long as either score is less than

Code Example 7.23

1 public boolean serverWon() {
2 return winner(serverScore, receiverScore);
3 }
4
5 public boolean receiverWon() {
6 return winner(receiverScore, serverScore);
7 }

serverWon() and receiverWon(), take 1
The commonalities are combined by calling the same method with the variables serverScore

and receiverScore reversed.

Code Example 7.24

1 public boolean winner(int x, int y) {
2 return x >= 4 && x >= y;
3 }

winner()
A player with score x wins over a player with score y if x is at least 4 and is at least 2 more than

than y.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 182

3, simple scoring will work (see Code Example 7.25). The announceSimpleScore()

method is just the old announceScore() method, as shown in Code Example 7.26.

• announceGameOver() & announceDeuceScore()

The method announceGameOver() is shown in Code Example 7.27. It checks who won and
announces that. Finally, announceDeuceScore() is shown in Code Example 7.28. There

Code Example 7.25

1 public boolean simpleScore() {
2 return receiverScore < 3 || serverScore < 3;
3 }

simpleScore()
If either score is less than 3 we can use simple scoring.

Code Example 7.26

1 public void announceSimpleScore() {
2 theTA.append(theConverter.convert(serverScore) + "-"
3 + theConverter.convert(receiverScore) + "\n");
4 }

announceSimpleScore()
Simply add the current score to theTA.

Code Example 7.27

1 public void announceGameOver() {
2 if (serverWon())
3 theTA.append("Game Server!\n");
4 else theTA.append("Game Receiver!\n");
5}

announceGameOver()
The game is over; announce who won.

CS231 Spring 5 Page 183

Simply Java Chapter 7: Conditional statements

are three cases in deuce scoring, so the correct construct is a cascaded if-else. If it were
difficult to decide how to write the code, ABC would be relevant.

That’s all the code. There were quite a few methods, but they are all quite simple. There
is a trade-off between writing simple, easy to debug code and the number of classes and
methods one must type. The typing is rather tedious, but the time spent designing and
implementing a simple solution will be paid back many times by the time not spent
debugging, especially in complicated programs.

iv) Testing
Now it’s time to test the play one game code. After you fix all the small mistakes, you
should see it displaying in the TextArea. There are two problems with the code written

Code Example 7.28

1 public void announceDeuceScore() {
2 if (receiverScore==serverScore)
3 theTA.append("Deuce\n");
4 else if(receiverScore < serverScore)
5 theTA.append("Advantage Server\n");
6 else theTA.append("Advantage Receiver\n");
7 }

announceDeuceScore()
There are three cases; deuce, advantage server and advantage receiver.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 184

above (see Figure 7.3). First, it does not announce the score before the first point, i.e. it

Figure 7.3

The complete output for 4 presses of the left Button, then 6 of the right. Two bugs are apparent.

CS231 Spring 5 Page 185

Simply Java Chapter 7: Conditional statements

never says love-love. Second, after the game is over, it still allows points to be scored.
The output shown is for four clicks of "point for server" then six of "point for receiver". It
would be better to stop scoring after the game is over! Fortunately, because the code is
written well, these are both easy to fix.

d) Announcing the score before the first point

Fixing bugs can be easy or difficult. The better you understand the code the easier it is.
The simpler the code, the easier it is to understand what’s going wrong. Well written code
has modules that make it easy to modify.

The reason it does not announce the score before the first point is obvious if you look at
the code. The only time it announces the score is when the user pushes a Button (check it,
it’s true). So, how to announce the score before the first point?

It would be easy to cause the game to announce the score if there were a method that
announced the score in Game. Is there?

Where should the announceScore message be sent to theGame? Look at the TennisApplet
code you’ve written. Where should you send that message? In init(), right after theGame
is created, see Code Example 7.29.

e) Preventing points after the game is over

When the user pushes a "point for" Button, you don’t always want to add a point; only
sometimes. That’s what if statements are for. You should only add a point if the game is
not over. Here’s the payoff from having written the gameOver() method. You can use it
from the Applet to check if the game is over and only add a point if it is not, see Code

Code Example 7.29

1 public void init() {
2 initComponents();
3 theGame = new Game(new Player("Serena"), new Player("Maria"));
4 theGame.setTheTA(theTA);
5 mariaImage = getImage(getCodeBase(), "maria.jpg");
6 serenaImage = getImage(getCodeBase(), "serena.jpg");
7 theGame.announceScore();
8 }

announcing the initial score
Line 7: Announce love-love.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 186

Example 7.30. Make these changes (guard both the Buttons!) and rerun your code. With

any luck, you now have a working Tennis game.

D. Conclusion
The if statement allows different statements to execute depending on the situation. It has
two forms, if without an else and if-else. If you want your program to do something only
under certain conditions, use an if statement.
 if (condition is true)
 doSomething

If you want your program to do either one thing or another, use an if-else statement
 if (whatever condition determines when to do the first thing)
 oneThing();
 else anotherThing();

Multiple cases can be handled either by a cascaded if-else, or a switch statement. In
complex cases, the Analysis By Cases (ABC) technique can help clarify your thinking.

E. End of chapter material

i) Review questions
 7.1 If you want to either execute a statement or not depending on some condition, what

statement do you use?
 7.2 If you want to execute either one statement or another depending on circumstances,

what statement do you use?
 7.3 Why is the if statement called a conditional statement?
 7.4 Write a statement that prints "yes" is x is greater than zero and "no" otherwise.

Code Example 7.30

1 private void serButtonActionPerformed(java.awt.event.ActionEvent evt)
{

2 if (!theGame.gameOver())
3 theGame.serverScored();
4 }

only add points if the game is not over - !over
Line 2: Guard sending the serverScored() message with !theGame.gameOver(). I.e. if the

game is over, do not send the serverScored() message.

CS231 Spring 5 Page 187

Simply Java Chapter 7: Conditional statements

 7.5 Reverse the logic in Code Example 7.6. I.e. exchange the statements before and after
the else; then reverse the logic of the boolean expression so it still does the right
thing. If in doubt, make a truth table.

 7.6 Make a truth table for (!p||q) && !(r&&!q)
 7.7 In craps, on the first roll, if you roll 7 or 11, you win, if you roll 2 or 12, you lose.

Otherwise, you must roll the same value you rolled the first time before you roll a 7
to win. Write an cascaded if-else statement that tests a variable rollValue and prints
one of three things: "you win!", "sorry, you lose", or "roll again" depending on its
value.

ii) Programming exercises
 7.8 The dangling statement. Here’s some code with what may be a subtle bug. What

would it print if age were 14? If age were 41? How to fix it?
if (age > 18)
 System.out.println("Major");
else
 System.out.println("Minor");
 System.out.println("You may not enter!");

 7.9 Write a method named exclusiveOr, which is passed two boolean parameters and
returns true if exactly one of them is true.

 7.10 An exam is graded as follows: 91-100: A, 81-90: B, ...61-70: D, <61: F. Write a
method that is passed an int score and returns the appropriate grade as a String. First
use an if-else, then a switch statement. Hint: what values would (score-1)/10 take on
for various scores? Remember how integer division works.

 7.11 Modify announceWinner to announce the winner’s name. Like "Game Serena!".
Hint: use getName().

 7.12 Add an error message if the user pushes a Button after the game is over.
 7.13 A better solution is to disable the Buttons when the game is over. Do that. Perhaps

the easiest way is to send them the setVisible(false) message.
 7.14 Modify your code so that it plays a set instead of a game. Create a Set class; model

it on Game. Play an entire set.
 7.15 Modify your code so that it plays a match instead of a set.

Simply Java Chapter 7: Conditional statements

CS231 Spring 5 Page 188

CS231 Spring 5 Page 189

Chapter 8: Iterative statements and Strings

A. Introduction

i) Repetition
Repetition is part of life. Everyone is familiar with it. The sun comes up, the sun goes
down. The sun comes up, the sun goes down. Spring turns to summer; fall arrives and
students gather in classrooms - over and over. Babies grow to children, mature to adults,
have more babies, and die; for the last million years or so. Civilizations rise and fall;
again and again. The galaxy turns, but very slowly to our eyes.

ii) On being conscious
If parents are unthinking, not conscious of what they are doing, they tend to raise their
children as they were raised. They do the things that were done to them as children to
their own children. This is not always optimal. Similarly, teacher, if they have not
reflected on the process of teaching and learning, may have their student do the same
tedious, unproductive exercises they were forced to do. If the world, or the field has
changed, this is sometimes not the best plan.Repetition, for it’s own sake is a bad idea.

iii) Imitation and culture, or monkey see, monkey do?
Researchers have shown that humans are much better at imitation than other great apes,
even when it makes no sense. Here is a revealing experiment. The subjects (human and
chimpanzee) watch a person trying to reach a banana from behind bars. It is out of reach,
but there is a rake-like tool lying at hand. On one side, it has 4 tines, on the other 2. The
person picks it up and drags over the banana with the 2 tined side. Then the subject is
then put behind the bars, and a new banana is placed out of reach. Both people and
chimpanzees use the rake to get the banana, but the people use the 2 tined side much
more often than the 4 tined side, even though it is much more difficult than the other side.
The question is, why?

One hypothesis is the people are biased, unconsciously, towards doing things the way
they have seen them done. Why might this be a species trait? One explaination is that this
might lead to the emergence of language and culture. If one group of protohumans tends
to do things and express things the same way automatically, and another doesn’t, the
former tends to develop coherent language, which allows them to communicate better

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 190

and gives them tremendous adaptive advantage. Same with culture in general. Whether of
not this is true, it is an interesting speculation.

iv) This chapter
This chapter introduces Java statements that repeat. Together with conditional statements,
these comprise the bulk of control structure in Java. Good control structure, coupled with
well designed class structure, can yield powerful and useful software.

Unlike other chapters, this one will be almost devoid of classes. It focuses on the
mechanics of loops and Strings. Perhaps you can learn this material simply by reading the
text, but it may help these constructs stick in memory if you type them into a program
and run them (and they are all essential to programming). This would also give you a
chance to experiment with small changes to them; to play around with them. That’s the
best way for most people to learn.

The previous chapter introduced conditional statements; this one will introduce the other
statements that implement control structure, iterative statements. It also will discuss
Strings in more detail.

B. Iteration: Repeated action
Iterate is another word for repeat. To make a program to do something a number of times
use an iterative statement. There are three iterative statements in Java; see BNF 8.1 This

chapter will cover while and for.

BNF 8.1 Iterative statement

<iterative stmt> ::= <while stmt> | <for stmt> | <do-while stmt>

CS231 Spring 5 Page 191

Simply Java Chapter 8: Iterative statements and Strings

C. The while loop

i) Syntax and semantics
The syntax and semantics of a while statement are shown in BNF 8.2. Notice that the

syntax is very much like an if statement (see BNF 7.1 "The if statement" on page 158).
The difference in semantics is that after the <stmt> is executed, the <boolean expression>
is evaluated again, and if it is still true, that process repeats, possibly forever. The
programmer must remember to make sure that while loops are not infinite!

ii) Examples

a) Counting to 10

Code Example 8.1 shows a while loop that prints the numbers from 1 to 10. This loop

runs over and over until the boolean expression count<=10 is false at the top of the loop

BNF 8.2 The while statement

<while stmt> ::= while (<boolean expression>) <stmt>

Semantics
1: Evaluate the <boolean expression>

2: If the value of the expression is true, execute the <stmt> after <expression>

3: Go back to step 1.

Code Example 8.1

1 int count=1;
2
3 while (count<=10) {
4 System.out.println("count=" + count);
5 count++;
6 } // while

Counting to 10
Line 1: declare an int variable named count and set it to the value 1.
Line 3-6: the while loop
Line 3: the loop will run while count <= 10
Line 4: Print the value of count (along with a descriptive label).
Line 5: Add one to count.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 192

(it is only rechecked before the entire loop body executes). So, the execution of the loop
is controlled by the value of count. Thus, count is the control variable for this loop.
In this case the control variable is also being used to display the count; sometimes the
control variable only controls the number of times the loop executes. If you omit line 5,
this will print count=1, forever! This is called an infinite loop.

 One way to understand what a section of code does is analysis; simply look at it and see
what it does. If that works, fine. If that doesn’t work, one way to discover what it does is
called hand simulation. To hand simulate code, you need paper and pencil. Write
down the variables involved and step through the code, carrying out the semantics of
each statement one by one, recording the values of the variables as you go. Table 8.1
shows the hand trace for Table 8.1; make sure you understand it; then do it yourself. It is

slow work, but sometimes it provides insight into the mysterious inner workings of code.

Table 8.1:

line action count
1 declare count 1
3 count<=10? yes, do body 1
4 output count=1
5 count++ 2
3 count<=10? yes, do body 2
4 output count=2 2
5 count++ 3
3 count<=10? yes, do body 3
...
5 count++ 10
3 count<=10? yes, do body 10
4 output count=10 10
5 count++ 11

count<=10? no!, done! 11

CS231 Spring 5 Page 193

Simply Java Chapter 8: Iterative statements and Strings

b) Doing something 10 times

Code Example 8.2 is a generic loop to do something 10 times. What that something is is

up to the programmer.

For example, this loop can be used to output the squares and cubes of the numbers from 1
to 10 as shown in Code Example 8.4. This code does what it is supposed to, but the

output doesn’t look very nice. Figure 8.1 has the output for this loop from my machine.

Code Example 8.2

1 int count=1;
2
3 while (count<=10) {
4 something();
5 count++;
6 } // while

doing something 10 times
Because it is sitting in a loop that goes around 10 times, something() will be executed 10 times.

Code Example 8.3

1 int count=1;
2
3 while (count<=10) {
4 sqAndCube(count);
5 count++;
6 } // while

 ...

1 void sqAndCube(int x) {
2 System.out.println("x=" + x + "x^2=" + x*x + "x^3=" + x*x*x);
3 }

Using that while loop to print a list of squares and cubes.
The control variable is passed as the value to square and cube each time. Notice that there are

some formatting issues.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 194

Although there are spaces in the println(), there are none inside the ""s. That println

would create better looking output if it had a few spaces; like this:
 System.out.println("x=" + x + " x^2=" + x*x + " x^3=" + x*x*x);

Figure 8.1

Output from Code Example 8.3 -- obviously in need of spaces.

CS231 Spring 5 Page 195

Simply Java Chapter 8: Iterative statements and Strings

Figure 8.2 has the output with that change. It is better, but the different widths of the

larger numbers rather wreck the readability. This is a good place to use the tab character
(\t):
 System.out.println("x=" + x + "\tx^2=" + x*x + "\tx^3=" + x*x*x);

Figure 8.2

Slightly better output from Code Example 8.3 -- still in need of tabs.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 196

Output from this appears in Figure 8.3 and looks rather better. The general problem of

formatting text from Java will be postponed indefinitely.

c) Doing something n times

In the more generic loop in Code Example 8.4, the control variable is compared to

another variable, N, instead of 10. This can make a big difference in a more complex
situation. Changing a 10 to 1000 is easy, changing 8 10s to 1000s less so; and what if you
forget one of them?

Figure 8.3

Output from Code Example 8.3 -- with tabs.

Code Example 8.4

1 int N=100000;
2 int count=1;
3
4 while (count<=N) {
5 something();
6 count++;
7 } // while

A generic while loop
This loop does something() N times. Suitable for memorization.

CS231 Spring 5 Page 197

Simply Java Chapter 8: Iterative statements and Strings

d) Counting to 10 - take II

Code Example 8.1 started the value of count at 1, like a person would. But, it is common
for loops in programs to start from 0 instead, for reasons that will be seen below. Code

Example 8.5 shows the same loop counting from 0. There are three changes: count is
initialized to 0, the expression is (count<10) instead of (count<=10) and lines 4 and 5 are
exchanged. Convince yourself that this loop does the same thing as the other.

e) Infinite loops

The while loop gives the programmer tremendous power. But with increased power
comes increased capacity for error. If the control variable is never updated inside the
loop, it is always an infinite loop. If the control variable is not correctly updated, it may
be an infinite loop.

Code Example 8.5

1 int count=0;
2
3 while (count<10) {
4 count++;
5 System.out.println("count=" + count);
6 } // while

Counting to 10 - take II
This also prints the numbers 1-10; but using slightly different logic.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 198

D. The for loop

Code Example 8.6 does exactly what Code Example 8.4 did, but uses a for loop instead

of a while loop. It is a bit more compact than the equivalent while loop, and until you are
used to it, more confusing. One young programmer who was familiar with while loops
but not for loops and refused to learn for loops because, "They are too complicated!".
This was a mistake.

Sometimes learning one thing makes another more difficult to learn. This is called
proactive interference. The effect is particularly strong when you know one way to do
something and someone wants you to learn another. The way you know (in my case, the
while loop) seems simple and obvious; the new way difficult and confusing. When you
try to solve a problem with a new technique, you immediately know how to solve it with
the old technique (which interferes with applying the new technique). So you resist the
new way. This is true at all scales; from iterative statements to programming languages
and paradigms, operating systems, and even life-styles. But, change is good; if you stop
learning, your life is essentially over. Oops, back to the for loop.

Code Example 8.6

1 int N=10
2
3 for (int count=1; count<=N; count++) {
4 something();
5 } // for

doing something 10 times with a generic for loop
Notice that initialization, checking and incrementing the control variable, all happen in the first

line of the for. This makes them much more difficult to forget.

CS231 Spring 5 Page 199

Simply Java Chapter 8: Iterative statements and Strings

The syntax and semantics of a for loop is very similar to that of a while loop. As BNF 8.3

shows, it starts with the word for, then some things in ()s then a single statement. There
are three things in the parentheses (see Figure 8.4); the one in the middle, the

continuation condition, is a boolean expression (see BNF 8.3), exactly like the while

BNF 8.3 The for statement

<for stmt> ::= for (<initialization>;<continuation condition>; <update>) <stmt>

Semantics
1: Execute <initialization>.

2: If the value of the <continuation condition>. is true, execute the <stmt>

3: Execute <update>.

4: Go back to step 2 (that’s right, step 2!).

Figure 8.4

For loop illustration.

<initialization> ::= <stmt>

<continuation condition> ::= <boolean expression>

<update> ::= <stmt>

Both <initialization> and <update> are simply statements, the <continuation
condition> is simply a boolean expression

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 200

loop. The first thing, <initialization> statement, is done once, before anything (like
initialization always is!). The third, <update>, is done after the body of the loop is
executed (each time it is executed).

The big advantage of a for loop is that the initialization and update are included in the
statement. That way they are easy to find and hard to omit accidently.

i) Example

a) Task:
Write a program that will count to 1000 by twos, displaying the count to System.out.

Several methods might be employed to accomplish this task. First, since we already have
a loop that counts to 10 by 1’s, we could simply change the 10 to 1000 and only print the
even numbers, as in Code Example 8.7. Notice here that the first part of the String

parameter is "". That way it doesn’t say "count=" every time. On some compilers if you
omit that and just write System.out.println(count); it will generate a compiler error
complaining that an int is not a String (recall "int to String" on page 123).

How can we determine if count is even? Here’s a hint: even numbers are evenly divisible
by 2. Need another hint? The % operator yields the remainder after int division. One
more hint? If a number divides another evenly, the remainder is zero. Okay?

Code Example 8.7

1 int N=1000;
2
3 for (int count=1; count<=N; count++) {
4 if (count is even)
5 System.out.println("" + count);
6 } // for

Counting to 1000 by 2’s - method 1 concept
The for loop iterates 1000 times, with count going from 1 to 1000. Only even numbers print.

CS231 Spring 5 Page 201

Simply Java Chapter 8: Iterative statements and Strings

A second approach to this problem is to change the update so that each time around the
loop it adds 2 to count instead of 1. I.e. change the count++ to count=count+2; -- see Code

Example 8.8.

Third, we could just count from 1 to 500 and print twice the count each time -- see Code

Example 8.9. Which of these methods would be better? It’s a matter of style.

b) Cleaning up the output.

If you run that code, it produces 500 lines of output. That’s a bit excessive. it would be
nicer if more than one number were printed on each line. The println() method ends the
line. There is another method, print(), that does not end the line. Thus, the simple
solution would seem to be to send print() instead of println() to System.out; do you
know what would go wrong in that case?

Code Example 8.8

1 int N=1000;
2
3 for (int count=2; count<=N; count=count+2) {
4 System.out.println("" + count);
5 } // for

Counting to 1000 by 2’s - method 2
By changing both the initialization and the update, we get clean simple code.

Code Example 8.9

1 int N=500;
2
3 for (int count=1; count<=N; count++) {
4 System.out.println("" + count*2);
5 } // for

Counting to 1000 by 2’s - method 3
Count goes from 1-500, count*2 is printed each time.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 202

Using print(), all the numbers are concatenated without any spaces on one line. The
beginning of the output is shown in Figure 8.5. That’s two problems. The first is very

easy to solve; see Code Example 8.10. The second is more complicated and not entirely

obvious how to solve.

Figure 8.5

Using print() instead of println() produces more compact output. Possibly too compact!

Code Example 8.10

1 for (int count=2; count<=N; count=count+2) {
2 System.out.print(" " + count);
3 } // for

Counting to 1000 by 2’s - on one line
Notice the print() instead of println(). The space in the ""s puts spaces between the numbers.

CS231 Spring 5 Page 203

Simply Java Chapter 8: Iterative statements and Strings

• Printing 10 numbers per line

One idea would be to print a fixed number of numbers on each line; say 10. Pseudo-code
for this is shown in Code Example 8.11. How can we tell if 10 numbers have been

printed on this line? Here’s two possibilities: 1) add a counter; initialize it to 0, and each
time we print a number, add one; when we do the println(), reset it to 0. Or, 2) Figure
out some clever way to discern when 10 numbers have been printed. The former is rather
more code, but more general; the latter is, well, clever, but likely to be hard to generalize
(i.e. use in another context).

Code Example 8.11

1 for (int count=2; count<=N; count=count+2) {
2 System.out.print(" " + count);
3 if (have printed 10 on this line)
4 System.out.println(); // go to next line
5 } // for

Pseudocode for printing 10 numbers on each line
How shall we keep track of how many numbers have been printed on this line?

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 204

• Adding another counter

With a counter, the pseudocode appears in Code Example 8.12. Of course, the variable

wordCount must be declared and initialized to 0 before the loop. This produces the output
shown in Figure 8.6.

• A clever trick

If there were some property shared by all the final numbers on a line, the code could
check that property instead of keeping a counter to tell when it is time to end the line.
Looking at that output, can you see anything unique about the last number on each line?
Right, they are all multiples of 20. So, to tell if it is time to end the line we could just

Code Example 8.12

1 for (int count=2; count<=N; count=count+2) {
2 System.out.print(" " + count);
3 wordCount++; // increment wordCount
4 if (wordCount == 10) {
5 System.out.println(); // go to next line
6 reset wordCount to 0;
7 } // if
8 } // for

Pseudocode for printing 10 numbers on each line with a counter
Realize that wordCount must be initialized outside the loop before it starts.

Figure 8.6

Ten even numbers on each line; too bad the alignment is so bad.

CS231 Spring 5 Page 205

Simply Java Chapter 8: Iterative statements and Strings

check if count%20==0, as in Code Example 8.13. This kind of coding trick is fun, but can

lead to disaster if later the code must be modified. Nonetheless, it is useful to remember.

ii) The empty statement
Here’s my favorite statement, the empty statement. BNF 8.4 shows its syntax and

semantics. It consists of nothing and does nothing. What good is it? It allows the
programmer to omit a statement in a place where syntactically a statement must appear
and still match the grammar. In other words it allows the programmer to get around the
rigidity of the compiler, which can be a very good thing.

iii) An infinite for loop
The format of a for loop makes it difficult to forget to update the control variable and so,
one is less likely to write an infinite for loop. But, sometimes you want to write an

Code Example 8.13

1 for (int count=2; count<=N; count=count+2) {
2 System.out.print(" " + count);
3 if (count % 20 == 0)
4 System.out.println(); // go to next line
5 } // for

Pseudocode for printing 10 numbers on each line with a trick.
Since every 10th number is a multiple on 20, this works too.

BNF 8.4 The empty statement

<empty stmt> ::=

Semantics
Does nothing

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 206

infinite for loop (as you will see in the next chapter). Code Example 8.2 shows how to

send the something() message forever. Note that the {}’s are not necessary. The line
something(); is a message statement, so Code Example 8.15 is legal as well.

The empty statement sometimes causes nasty bugs (yet another example of the fact that
most things have two sides). Can you see what is wrong with the code in Code Example

8.16? If you don’t see it immediately, try matching the symbols one by one with the BNF
8.3. It starts like this: for matches for, (matches (, absolutely nothing matches the empty
statement, which is a <statement> which is an <initialization>...

If you ran this code it would never do anything, but unlike the empty statement, which
does nothing immediately, it would do nothing, forever!

Code Example 8.14

1 for (;;) {
2 something();
3 } // for

doing something() forever
This for loop will execute forever; doing something() over and over.

Code Example 8.15

1 for (;;) // forever!
2 something();

Code Example 8.14 without the {}s
This is also legal because something(); is a single statement.

Code Example 8.16

1 for (;;); // forever!
2 anything();

An infinite loop that doesn’t do anything
Can you see why?

CS231 Spring 5 Page 207

Simply Java Chapter 8: Iterative statements and Strings

E. Strings: a very brief introduction
The Java String class is used to store literal sequences of characters. There are many
methods that operate on Strings; you can read about them in the documentation; it’s about
time you got used to reading Sun’s API documentation. This section will introduce a bare
minimum of String methods with the signatures: int length(), char charAt(int),
boolean equals(String), and String toUpperCase(). Notice that these four methods
return int, char, boolean and String values, respectively. Then it will present a better
way of breaking lines of even numbers.

i) A few String methods

a) int length()

As you might guess, if you send length() to a String, it will return its length. So the
code:

String s = "hello";
System.out.println("s=" + s + " s.length()=" + s.length());

will print s=hello s.length()=5. No surprises.

b) char charAt(int)

A String is a series of characters. The Java type for characters is char; each char holds a
single character. Character constants have single quotes around them, like ’a’ or ’$’. The
first character in a String is at location 0. That’s zero, not one, but zero. Forgetting this
will cause little annoying bugs. Rather like mosquitoes. Not really harmful, but pesky.
The reason the first char is at zero is that Strings are implemented as arrays, which are
coming up in a few chapters. Arrays in Java, like in C++ and C, start at zero. No way
around it. Deal with it. Accept it. Remember it!

With String s="hello"; the following are true:
s.charAt(0) returns 'h'
s.charAt(1) returns 'e'
s.charAt(2) returns 'l'
s.charAt(3) returns 'l'
s.charAt(4) returns 'o'

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 208

You could write a loop to produce those five lines. Pseudocode for it is shown in Code

Example 8.18. This is a pattern for many methods that process Strings. If you wanted to
become expert at Java programming it would be worth committing to memory; both the
pseudocode and the code. Your choice.

When you wish to access each of the chars in a String from first to last in order, you use
the idiom shown in Code Example 8.18. Line 2 there is the generic for loop you write to

access the chars in the String, s, sequentially. In the body of the loop, s.charAt(i) is each
char, one after another each time around the loop. In pseudocode s.charAt(i) is "the next

Code Example 8.17

1 String s="Howdy!";
2 for (each char in s) {
3 output the next char with suitable description
4 } // for

Pseudocode to print all the chars in a String
See Code Example 8.18 for the code that implements this.

Code Example 8.18

1 String s="Howdy!";
2 for (int i=0; i<s.length(); i++) {
3 System.out.println("charAt(" + i + ") is: '" + s.charAt(i) + ' ');
4 } // for

Printing the chars in a String one per line
Notice the various parts of the String parameter that produce the readable output.

CS231 Spring 5 Page 209

Simply Java Chapter 8: Iterative statements and Strings

char". The output of Code Example 8.18 is shown in Figure 8.7. Notice how the String

"charAt(0) is: " is constructed in the println() on line 3. It is inconvenient, but highly
informative to output such descriptive text along with the data one is outputting. If you
are printing chars, the delimiters can be surprisingly important. The difference between
printing nothing and printing an invisible character is important, but invisible. The ’s
bracketing the char let the reader see this difference.

c) boolean equals(String)

You cannot compare Strings with ==. Instead you must use equals(). Worse, if you
forget, and use ==, no error message will appear, because Java will compare the memory
locations of the two Strings. Not what you expected, or wanted. So, if you wanted to
know if the same text is in two TextFields, you must write code like:

String s1 = aTF.getText();
String s2 = bTF.getText();
if (s1.equals(s2))
 "yes! they are the same";
else "no. not equal"

d) String toUpperCase()

This method does what you might expect, it makes an uppercase copy of the String it is
sent to and returns that. So:

String s = "abcDEFghi";
System.out.println(s.toUpperCase());

would output: ABCDEFGHI.

Figure 8.7

Output from code in Code Example 8.18

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 210

There are many useful methods that you should learn if you were going to do any
extensive programming with Strings, including: substring(), replaceAll(), and
subSequence().

ii) Breaking lines using Strings
The technique to print 10 even numbers per line in Code Example 8.12 on page 204
worked, but it was rigid and produced somewhat ugly output. This example will do the
same job more generally and elegantly. It will count to 1000 by 2’s and print as many
numbers on each line as will fit.

• Decoupling the output

An important step to writing elegant, general code is to decouple the logic and the output.
This is true of all code. Input and output are inherently messy and idiosyncratic. A
standard technique is to consolidate output in a method call emit(), as shown in Code

Example 8.22. This way the logic of the loop is kept simple and whatever needs to be
done with output Strings happens in one place, emit().

• Buffers

An area of working storage is called a buffer. The job of emit() here is to put as many
output Strings on each line as will fit. It will accomplish this with an output buffer. The
buffer will start empty. Whenever a String is sent to emit, if it fits in the buffer, it will be
concatenated onto the end. If it overfills the buffer two things will happen: first the buffer
will be output (or flushed, as is sometimes said), second the String will be added to the
now empty buffer as the first thing on the next line. Pseudocode for emit() appears in

Code Example 8.19

1 void countTo_N_Improved() {
2 for (int count=2; count<=N; count=count+2) {
3 emit(" " + count);
4 } // for

Using emit() to decouple the output
Each String to be output is sent to emit which handles the formatting and output.

CS231 Spring 5 Page 211

Simply Java Chapter 8: Iterative statements and Strings

Code Example 8.20. Notice that lines 4 and 6 are identical. When the same thing is done

at the end of both the if and else parts of an if else you can do what is called bottom
factoring.

• Bottom factoring

Since either the if part or the else part of an if else is bound to execute, when the last
thing in both is the same, it is always the last thing done before the next statement. Thus,
it can be moved after the if-else. This is illustrated in Code Example 8.21. Having

thought through the logic and written detailed pseudocode, it is fairly easy to write the

Code Example 8.20

1 void emit(String nextChunk) {
2 if (nextChunk would overfill the buffer) {
3 flush buffer
4 add nextChunk to the buffer
5 }
6 else add nextChunk to the buffer
7 }

Pseudocode for emit - first try

Code Example 8.21

1 void emit(String nextChunk) {
2 if (nextChunk would overfill the buffer)
3 flush buffer
4 add nextChunk to the buffer
5 }

Pseudocode for emit - after bottom factoring
Since the next chunk is always added to the buffer, this code does the same thing as Code

Example 8.20. It is simpler and easier to read.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 212

actual code; see Code Example 8.22. Make sure you understand how this implements the

pseudocode; these are standard techniques you will need to know.

 The output using this line breaking scheme is shown in Figure 8.8. It is much better

balanced and adaptable than the original. This technique could be easily adapted to a
word processing application.

Code Example 8.22

1 final int MAX_LINE_LENGTH=70;
2 String buffer = "";
3 void emit(String nextChunk) {
4 if (buffer.length() + nextChunk.length() > MAX_LINE_LENGTH) {
5 System.out.println(output);
6 buffer = ""; // empty the buffer
7 }
8 buffer += nextChunk;
9 }

Breaking lines at 70 chars.
Line 2: declare and initialize the buffer.
Line 4: check if adding this next chunk would overfill it.
Line 5: if so; flush it - first output it...
Line 6: ...then empty the buffer
Line 8: always add the new output to the end of the buffer.

Figure 8.8

Output from code in Code Example 8.18

CS231 Spring 5 Page 213

Simply Java Chapter 8: Iterative statements and Strings

F. Conclusion
This chapter introduced loops and Strings. Once you are familiar with classes, methods,
instances, Strings, chars, conditional and iterative statements, you have the skills to solve
a great number of problems. The next three chapters will introduce StringTokenizer, file
I/O, and lists (both arrays and Vectors). Those are the last new topics in this text.

G. End of chapter material

i) New terms in this chapter
control variable - a variable that controls the execution of an iterative loop 187
hand simulation - simulating code by hand; performing the semantics of each statement,

one by one to discover how code works, or when it is broken, why it doesn’t 187
infinite loop - a loop that executes forever 187

ii) Review questions
 8.1 What is the difference between a while loop and a for loop syntactically?
 8.2 What can you do with a while loop that you can’t do with a for loop?
 8.3 If String s="stuff"; what is s.charAt(1)?
 8.4 What is a buffer?
 8.5 What is bottom factoring?
 8.6 Hand simulate Code Example 8.5 on page 197.

iii) Programming exercises
 8.7 Write and run the three methods for counting to 1000 by 2’s.
 8.8 Write a method, String reverse(String), that returns its parameter backwards.
 8.9 Write a method int countEs(String), that returns the number of 'e's in the parameter.
 8.10 Write a method int countVowels(String), that returns the number of vowels in the

parameter.
 8.11 Write a method boolean palindrome(String), that returns true just if its two

parameter is the same backwards as forwards. E.g. "noon", "madam" and "aha" are
palindromes.

 8.12 Extend the previous method to handle spaces, punctuation and capital letters. E.g.
"A man, a plan, a canal. Panama!" is a palindrome. Hint: use a filtering scheme. First
make everything uppercase (toUpperCase()), then remove punctuation and spaces
(Character.isLetter(char)), then use the method from above.

 8.13 Write a method boolean anagram(String, String), that returns true just if its
parameters are anagrams.

Simply Java Chapter 8: Iterative statements and Strings

CS231 Spring 5 Page 214

 8.14 Write a program to print all the print numbers less than 1000.

CS231 Spring 5 Page 215

Chapter 9: Simulation and animation

A. Introduction
This chapter will present a program that implements a discrete-time simulation and
animation of a ball being dropped and bouncing. Perhaps that sounds daunting, but it is
relatively simple once you know how. The only new programming construct required for
simulation and animation is threads. The only new concept is discrete time simulation,
which may turn out to be more familiar than you expect.

B. An introduction to Threads
As discussed throughout, information processing is accomplished by sending messages to
objects. A message invokes a method; first the parameter linkage is performed, then the
method body is executed. When a method body is executed, first the first statement is
executed, then the second, and so on, until the last statement finishes execution; then the
method returns -- returns control to wherever the message that invoked it was sent.

Imagine the path of execution through a program over time. It includes the sequential
execution of statements in method bodies and the transfer of control from one method to
another by sending messages.

At any one time, one particular statement is being executed. If it is a message statement,
it invokes a method, which executes until it reaches the end of its block statement. For
example, in the Eye Applet, when the user pushes the shrinkButton, the run-time system
invokes its ActionPerformed() method (see Code Example 9.1), which sends a

Code Example 9.1

1 private void shrinkButtonActionPerformed(java.awt.event.ActionEvent evt) {
2 leftEye.shrinkPupil();
3 rightEye.shrinkPupil();
4 repaint();
5 }

shrinkButtonActionPerformed() from EyeApplet.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 216

shrinkPupil() message to first the leftEye, and then the rightEye, and then finally sends
a repaint() message to itself (since repaint() is changed to this.repaint() by the
compiler.

The shrinkPupil() method, in the Eye class (see Code Example 9.2) sends a setRadius()

message to the pupil object, which is a FilledCircle, but to do the parameter linkage, first
it must evaluate the parameter, pupil.getRadius() - 2. To do that, it first sends the
getRadius() message to the pupil object, and then subtracts 2 from whatever value that
returns. Both getRadius() and setRadius(), although sent to a FilledCircle, end up in
Circle (as FilledCircle inherits them from Circle).

So, the sequence of messages sent (and methods executed) is:
1.EyeApplet:actionPerformed()
2. Eye:shrinkPupil()
3. Circle:getRadius()
4. Circle:setRadius()
5. Eye:shrinkPupil()
6. Circle:getRadius()
7. Circle:setRadius()
8. EyeApplet:repaint()

This sequence of statements is executed in order; each statement has control while it is
executing. If you were to print the whole program, tape all the sheets together, and draw a
line from the first statement executed to the second, on to the third, through the 8th; you
would have a record of the path of execution when the shrinkButton is pushed. It would
lead from one method to another across various classes, and would look a bit like a thread
running through fabric. By following this path you can see which statements in the
program are executing in which order. This imaginary line, this path through the
program, is referred to as the thread of control, or thread, for short.

Code Example 9.2

1 public void shrinkPupil() {
2 pupil.setRadius(pupil.getRadius() - 2);
3 }

shrinkPupil() from the Eye class

CS231 Spring 5 Page 217

Simply Java Chapter 9: Simulation and animation

Each program you have seen thus far has had a single explicit thread, but to implement
animation a second thread is needed. Fortunately Java has a built-in Thread class you can
extend. Here’s how.

i) Simplest threaded animation
The simplest threaded animation is an animated counter. It has two classes, an Applet and
a Thread. The Applet creates and kicks off a Thread that repeatedly increments a counter
(in the Applet) and has the Applet display its current value. To begin implementation of
this example, create a GUI Applet named ThreadedApplet. Next, create a Controller class
and copy the code from Code Example 9.3. The Controller class has a single instance

Code Example 9.3

1 public class Controller extends Thread {
2 private ThreadedApplet theApplet;
3
4 /** Creates a new instance of Controller */
5 public Controller(ThreadedApplet theApplet) {
6 this.theApplet = theApplet;
7 }
8
9 public void run() {
10 for(;;) {
11 step();
12 pause();
13 }
14 }
15
16 private void step() {
17 theApplet.incCounter();
18 theApplet.repaint();
19 }
20
21 private void pause() {
22 try {
23 Thread.sleep(50);
24 } catch (Exception e) {}
25 }
26 }

Threaded Controller class

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 218

variable named theApplet, which is used to both increment the counter in the Applet and
to send the repaint() message to it (in the step() method).

a) Controller(ThreadedApplet)
The initializing constructor takes a single parameter, of type ThreadedApplet, and simply
stores it in the theApplet instance variable. This is a standard technique to establish a
two-way linkage between objects; the Applet object has a Controller variable which
points to the Controller object and the Controller object has a ThreadedApplet variable
which points back to the Applet. It is common to need a reference back to the object that
created another object and that is how it’s done.

b) run()

When the start() message is sent to the Controller from the Applet, because Controller
extends Thread, it first spawns a new thread of control, and then sends the Controller in
that Thread the run() message. This new Thread exists until the run() method returns.
The run method here is an infinite loop (see "An infinite for loop" on page 205). It runs
forever (or until the user closes the Applet), and it does just two things, step() and
pause(), over and over.

c) step()

The step() method sends first incCounter() and then repaint() to the Applet. The pause
method does only one thing, it sleeps for 50 milliseconds, but it looks rather complicated
because the sleep() method, which is sent to the Thread class throws an exception,
which must be caught (see ???). The simplest thing to do right now, is anytime you need
a program to pause, simply copy and invoke this method. The Thread:sleep() method
takes an int parameter and sleeps for that many milliseconds.

CS231 Spring 5 Page 219

Simply Java Chapter 9: Simulation and animation

Add the bold lines in Code Example 9.4 to your Applet. That’s all it takes! Run it, and if

you’ve made no mistakes you should see a counter counting... forever. Close the Applet
to make it stop.

Code Example 9.4

1 public class ThreadedApplet extends java.applet.Applet {
2 private Controller theController;
3 private int counter;
4 public void incCounter() {counter++;}
5
6 /** Initializes the applet BallApplet */
7 public void init() {
8 initComponents();
9
10 theController = new Controller(this);
11 theController.start();
12 }
13
14 public void paint(java.awt.Graphics g) {
15 g.drawString(""+counter, 100,100);
16 }

Changes to the ThreadedApplet class
Line 2: A variable of type Controller; this is the new Thread.
Line 3: A counter; will start, by default as 0.
Line 4: A method to increment (add 1 to) the counter; the Controller will use this.
Line 10: Create and store the Controller. Notice this as a parameter; this is the Applet.
Line 11: Spawn a new Controller thread and send the run() message to it.
Lines 14-16: The paint() method; draws the counter value in the Applet.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 220

To make it seem more animated modify paint() as in Code Example 9.5. Or, if you’d

like the circle to stay the same size, use a constant (like 20) for the 3rd and 4th
parameters. Do you see why this does what it does? Recall that the % operator gives the
remainder after integer division (see "Arithmetic operators" on page 119), so the first two
parameters range from 0-199. When counter is 200, or 400, or any even multiple of 200,
counter%200 is zero, that’s why the circle goes back to the upper left periodically.

C. The programming task
Your task for this chapter is to implement and animate a user controlled simulation of a
ball falling under the influence of gravity and bouncing until it stops. Let the user start
and stop the simulation by pressing a button. Make the radius of the ball 20 pixels and its
color red. Assume the elasticity of the collision with the floor is 90%; thus if the
downward velocity of the ball were 100 when it hit the floor, its subsequent upward
velocity would be 90.

i) Design
As always, before starting to write code, you should do enough design work to avoid
wasting many frustrating hours going down blind alleys. Never start programming before
you have a clear idea what you are trying to accomplish and how you will approach the
problem. To design this program, in addition to sketching the GUI and deciding which
classes to use, you must also have some idea what discrete time simulation is. These three
will be taken up in the next three subsections.

a) GUI
The problem description says there must be a Button to start and stop the simulation; so,
obviously you will need a Button (or two). It also says the ball should bounce when it hits
the floor; thus drawing a line for the floor, or perhaps a box around the ball would make
it less mysterious for the user when the ball changes direction.

Code Example 9.5

1 public void paint(java.awt.Graphics g) {
2 g.drawString(""+counter, 100,100);
3 drawOval(counter%200, counter%200, counter%177, counter%177);
4 }

Addition to the ThreadedApplet:paint() to draw a circle

CS231 Spring 5 Page 221

Simply Java Chapter 9: Simulation and animation

How big should the Applet be? The bigger it is, the farther the ball will be able to fall
before it hits the floor; but the particular size is not critical.

b) Discrete time simulation

Models are built to learn about systems of interest. A model allows you to practice with
and/or experiment with a system in a safe and inexpensive manner. A simulation of a
jetliner allows pilots to train without risking lives and expensive equipment. A simulation
of an economy allows planners to try out different measures without disrupting the actual
economy. A simulation of the interaction of greenhouse gasses, temperature and
glaciation allows scientists to make predictions about the likely effect of various levels of
greenhouse gas emissions. A model is always simpler than what it models (and so, no
model is ever perfect). Simulation is the implementation of a model in software. Thus,
the essence of simulation is simplification.

A discrete time simulation is named that because time moves in discrete steps. The size
of the step is up to the modeler; a simulation of a computer might have a time step of a
nanosecond, whereas one of continental drift might use a time step of a century or a
millennium. In the real world, time is entirely beyond our understanding or control. In a
simulation the modeler has complete control over time; it is whatever time the time
variable says it is. Welcome to cyberspace!

A simulation has some set of simulated objects. The state of each simulated object is
completely specified by its state variables. Similarly, the state of a simulation is
completely specified by the values of all its state variables. To move from one time step
to the next, the modeler provides a transition function. Given the values of all the state
variables at one time step, it calculates their values at the next time step. This transition
function may be simple or extremely complex depending on the application.

In the Snowman program, each time the user pushed the button the Snowman melted
some and the puddle under it grew some. If you think of that as a simulation of a
snowman melting, the state variables for a Snowman were x, y, size, and the size of the
puddle. The transition function decreased the size by 10% and increased the size of the
puddle by 10 pixels. The location of the snowmen never changed (unless you made them
move!). There was no interaction between the snowmen.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 222

In a more complicated simulation, for instance one implementing a model of planetary
motion around the sun, the various elements of the simulation affect each other. For a
famous old simulation of a cellular automaton, Conway’s Life see ???.

A dropped ball bouncing straight up and down under the effect of gravity will need two
state variables; one for its height from the floor and one for its velocity (up or down).
Given a position and velocity and a gravitational constant, its position and velocity at the
next time step can be computed using equations from elementary physics. Using standard
physics notation; s stands for position, v for velocity, and a for acceleration. As you
might guess vt is the velocity at time t, vt +1is the velocity at the next time step. Thus the
transition function may be written as two equations:

st+1 = st + vt
vt+1 = vt + at

So the ball’s height at the next time step is just its current height plus its current velocity;
its velocity at the next time step is just its current velocity plus the acceleration due to
gravity.

If you have not studied physics, those equations may seem a bit mysterious; but they are
quite simple once you understand them. If a ball is travelling at 10 pixels/step and is
currently at location 100, after the next step it will be at 110. In symbols, st = 100,
vt = 10, st+1 = st + vt = 100+10 = 110. Velocity is updated similarly.

c) Classes

The only thing in this program is the bouncing ball, so an obvious choice for a class is
Ball. If Ball extends FilledCircle, the position, color and paint() code is already written.
The only additional variable needed is velocity in the y direction. The only additional
method needed is step(), which implement the transition function from one time step to
the next.

ii) Implementation
Given your experience with the counter animation, you have seen code that does almost
everything the code for this program must do. You only need to create three classes; the
Applet, Controller and Ball (although you will need to copy FilledCircle and Circle from
your previous project).

CS231 Spring 5 Page 223

Simply Java Chapter 9: Simulation and animation

a) The Applet
The Applet needed for this program is almost identical with Code Example 9.4. Create a
GUI Applet, name it BallApplet, and copy the code from Code Example 9.6. Or, since

you just typed most of this code in doing the previous program, simply copy it from
there, delete the counter code and add the drawRect() message (line 14). Notice that this
draws a rectangle 750 pixels high; you could chose another size if you wanted.

b) The Controller class

The Controller class is very much like the Controller in Code Example 9.5. Copying and
pasting it, then editing it would be the most efficient, but feel free to retype it if that

Code Example 9.6

1 import java.awt.*;
2
3 public class BallApplet extends java.applet.Applet {
4 Controller theController;
5
6 /** Initializes the applet BallApplet */
7 public void init() {
8 initComponents();
9 theController = new Controller(this);
10 theController.start();
11 }
12
13 public void paint(Graphics g) {
14 g.drawRect(1,1,300,750);
15 theController.paint(g);
16 }
17 }

Initial BallApplet
As you can verify, this is identical with Code Example 9.4 with the counter removed, and the

addition of line 14.
Line 14: Draw a rectangle for the Ball to bounce in. The height is 750 so that with an Applet

height of 800 the bottom of the rectangle still shows.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 224

would help you remember it better. The code you need is in Code Example 9.7 with the

Code Example 9.7

1 import java.awt.*;
2 import java.applet.*;
3
4 public class Controller extends Thread {
5 private Applet theApplet;
6 private Ball theBall;
7
8 /** Creates a new instance of Controller */
9 public Controller(Applet theApplet) {
10 this.theApplet = theApplet;
11 theBall = new Ball(100,100,20,Color.RED);
12 }
13
14 public void run() {
15 for(;;) {
16 step();
17 pause();
18 }
19 }
20
21 public void paint(Graphics g) {
22 theBall.paint(g);
23 }
24
25 private void step() {
26 theBall.step();
27 theApplet.repaint();
28 }
29
30 private void pause() {
31 try {
32 Thread.sleep(50);
33 } catch (Exception e) {}
34 }
35}

Controller for the BallApplet
As you can see, this Controller is very similar to the one in Code Example 9.5 with the addition

of the Ball and the paint() method.
Line 11: The Ball will initially be centered at (100,100).

CS231 Spring 5 Page 225

Simply Java Chapter 9: Simulation and animation

changes from the previous Controller indicated in bold. As you can see, you must declare
a Ball variable (line 6), instantiate it in the constructor (line 11) and send it the step()
method when the Controller steps (line 26). Plus, you must paint() it when the
Controller is painted. That’s all. All that remains is writing the Ball class.

Be sure you are familiar with the Controller code. Read each method, line by line. Think
about how they interact (i.e. which invokes which, when). After doing that, read the
descriptions below. Pay special attention if there are any surprises -- surprises are clues
for what to focus on.

• Controller(Applet)

The constructor stores the reference to the Applet in the variable named theApplet. Then
it instantiates a red Ball of radius 20, centered at (100,100), and stores it in the variable
named theBall.

• run()

An infinite for-loop with two statements. Each iteration it steps and then pauses (for
50 msecs).

• paint(Graphics)

Sends paint(Graphics) to theBall. The only thing in the simulation is the Ball, so that’s all
that needs to be painted.

• step()

Sends step() to theBall, then repaints the Applet so the Ball’s new position will be
displayed.

c) The Ball class

The Ball class extends FilledCircle. It needs a variable for the y velocity (say, vy), an
initializing constructor, and a step() method. The constructor can just use FilledCircle’s
initializing constructor, i.e. it is one line: super(x,y,r,c);. The step() method has just
two lines; one to update the position (y = y + vy;) and one to update the velocity
(vy = vy + GRAVITY;). Recall that constants by convention are all uppercase (see "Case
conventions" on page 128), and gravity is definitely constant!

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 226

Gravity is constant, but what value should it have? That decision is entirely arbitrary
unless you assign some correspondence between pixels and distances in the world. That
would be possible, but not necessary in this case. Let the acceleration due to gravity be
one pixel per time step. By the way, the units of velocity is also pixels/time step.

Given that description, you can write the Ball class. If some part of that still seems
mysterious feel free to look at Code Example 9.8. But, if you actually want to learn to

program, instead of copying that example, keystroke for keystroke, take the time/spend
the effort to study and understand it; then go to the screen and type it in without peeking
(if you have to peek once or twice, that’s okay). Or, just copy it and waste your time; your
choice -- it doesn’t really matter, you’re going to live forever, right?

Code Example 9.8

1 import java.awt.*;
2
3 public class Ball extends FilledCircle {
4 public int GRAVITY=1;
5 private int vy;
6
7 public Ball(int x, int y, int r, Color c) {
8 super(x,y,r,c);
9 }
10
11 public void step() {
12 y += vy;
13 vy += GRAVITY;
14
15 System.out.println("v=" + vy);
16 }
17 }

The Ball class
Line 4: Define acceleration due to gravity as one pixel per time step.
Line 12: Update the y-coordinate.
Line 13: Update the y-velocity.
Line 15: Print the velocity so you can get some idea how it changes.

CS231 Spring 5 Page 227

Simply Java Chapter 9: Simulation and animation

d) Testing

With those three classes written, there’s enough code to test. Make the Applet taller, so
you can see the Ball hit the bottom of the rectangle (see "Changing the size of an Applet"
on page 341).

Once you fix all the syntax errors, you should see the Ball falling faster and faster and
disappearing off the bottom of the screen. If you look at the output you will see that it is
going one unit faster each time step. Now it’s time to add the bouncing off the floor code.

e) Making the Ball bounce - design

There are two steps to making the Ball bounce when it hits the floor: 1) detecting that it
hits the floor, and 2) reversing its direction. The latter is simple, just set the y-velocity to
its opposite (i.e. vy = -vy;). Note that the minus sign is unary minus, it only has one
operand. The former is a bit more complicated.

Logically, when the ball hits the floor it should reverse direction. In the world, physics
takes care of that; in the simulation, the programmer must decide how to simulate the
physics. Here’s an idea. On each time step, after updating the position, if the Ball has hit

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 228

the floor, reverse its direction. Looking at Figure 9.1 you can see that the distance from

the bottom of the Ball to the floor is 750-(y+radius), since y is the y-coordinate of the
center of the Ball. Thus the Ball has hit the floor if 750-(y+radius)<0, or equivalently if
(y+radius) > 750. In that case you wish to reverse its direction.

Figure 9.1

CS231 Spring 5 Page 229

Simply Java Chapter 9: Simulation and animation

f) Making the Ball bounce - implementation

The step() method from Code Example 9.8 can be modified to reverse directions when
the Ball hits the wall as shown in Code Example 9.9. Add that if statement and run the

simulation again. If the rectangle you drew was some other height than 750, use that
height instead of 750!

If your machine works like mine (and it might not, exactly), you saw the Ball bounce, but
it goes part way into the floor and gradually bounces higher and higher. This is a bit
surprising, and not at all like a real ball! What’s gone wrong? There are actually two
different, interacting causes. One of them stems from using ints which can only represent
whole numbers; the other from a flaw in our simulation methodology.

First we will confront a shortcoming of discrete time simulations. Assume the Ball is
travelling 10 pixels/step and before the time step it is 3 pixels from the floor. After the
time step, if it moves 10 pixels down, it will be 7 pixels into the floor before we check.
But, let’s ignore that for now until we get the bouncing higher problem solved.

Consider carefully what happens when the step() method in Code Example 9.9 is
executed with vy=17, and y=721. The first line changes y to 738. The second changes vy
to 18. The if compares (738+30) to 750; since 758>750 it evaluates to true and so
changes vy to -18. So, not only has the Ball gone 8 pixels into the floor, but also the
velocity has increased! Perhaps you should only increase the velocity if the Ball does not

Code Example 9.9

1 public void step() {
2 y += vy;
3 vy += GRAVITY;
4
5 if (y+radius > 750) // if it hit the wall
6 vy = -vy; // reverse direction
7 }

The Ball:step() method with bounce code
Line 5-6: If the bottom of the Ball is through the floor, reverse the direction.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 230

change directions as in Code Example 9.10. Try out this version. If your machine works

like mine, the ball always bounces the same height (although it continues to go into the
floor a bit).

The problem description said the elasticity of the ball/floor collision was 90%, so when it
changes direction you really should reduce the speed by 10% as in Code Example 9.11.

Code Example 9.10

1 public void step() {
2 x += vx;
3 y += vy;
4
5 if (y+radius > 750) { // if it hit the wall
6 vy = -vy; // reverse direction
7 System.out.println("vy=" + vy + " y=" + y);
8 }
9 else vy += GRAVITY; // no bounce? accelerate
10 }

The Ball:step() only accelerate if no bounce
Line 5-9: If the bottom of the Ball is through the floor, reverse the direction otherwise add the

influence of gravity to the velocity.

Code Example 9.11

1 public void step() {
2 x += vx;
3 y += vy;
4
5 if (y+radius > 750) { // if it hit the wall
6 vy = -vy*9/10; // reverse direction and reduce 10%
7 System.out.println("vy=" + vy + " y=" + y);
8 }
9 else vy += GRAVITY; // no bounce? accelerate
10 }

The Ball:step() 90% elasticity
Line 6: The collision between the ball and the floor has 90% elasticity, so reduce magnitude by

10% when changing direction.

CS231 Spring 5 Page 231

Simply Java Chapter 9: Simulation and animation

Try this out. It comes to a stop for me, but into the floor by 8 pixels. Here is some code to
fix it is shown in Code Example 9.12. This code is a bit complicated and if you don’t

understand it, that’s okay. If you want to figure it out, draw a picture. This code causes
the Ball to eventually come to rest exactly touching the floor. Without the -1 in vy-1 on
line 9 it got caught in a loop and never stopped bouncing due to the way int arithmetic
works. This is by no means a perfect simulation, but its close enough for now.

g) Starting and stopping with two Buttons

The last task remaining from the project description is to allow the user to start and stop
the simulation by pressing a button. This will be done first with two Buttons, then with
one. The former is easier to understand, the latter is less cluttered and illustrates a useful
technique.

Assume the two Buttons are named stopButton (which sends a stop() message to the
Controller) and goButton (which sends a go() message). The question is how to
implement stop() and go()? Recall that the Conroller:run() method (shown in Code

Code Example 9.12

1 public void step() {
2 x += vx;
3
4 int bottomY = 750-(radius+y);
5 if (vy >= bottomY) {
6 //System.out.println("vy=" + vy + " y=" + y);
7 int bounceHt = vy - bottomY; // how high it bounces this step
8 y = 750 - (radius + bounceHt); // y-coord after this step
9 vy = -(vy-1)*9/10;
10 }
11 else {
12 y += vy;
13 vy += GRAVITY;
14 }
15}

The Ball:step() improved?
Line 7: Calculate how far it will travel up after bouncing
Line 8: From that calculate the new y-coord of the center
Line 9: Reverse vy and subtract 1 to avoid endless small bounces.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 232

Example 9.13) is running in a separate Thread. It is an infinite loop that does step(), and

then pause(), over and over. How can you arrange that stop() will stop the simulation
and go() will resume it? What is needed is if stop() has been executed since go(), the
loop should just pause() and not step(); otherwise it should do both. Do you know what
programming construct to use?

Whenever you want to either do something or not, you use an if statement. You would
like to modify run() as shown in Code Example 9.14 so the step() message is only sent

if the last button pushed was go. But how to write that in Java? The answer is to use a
boolean variable, called perhaps, running. The type boolean is used when you only need
to represent two values, true and false (see "types, values, operators" on page 118). This
situation is perfect for a boolean variable, the simulation is either running or paused.
When the Controller gets the stop() message, it should set running to false, when it gets
the go() message it should set it to true, and the expression guarding the step() message
should just be the boolean variable named running. This is illustrated in Code Example

Code Example 9.13

16 public void run() {
17 for(;;) {
18 step();
19 pause();
20 }
21 }

Controller:run() from Code Example 9.3

Code Example 9.14

1 public void run() {
2 for(;;) {
3 if (last button pushed was go)
4 step();
5 pause();
6 }
7 }

An if statement to make step() conditional
Lines 3-4: step() will only happen if the last button pushed was the goButton

CS231 Spring 5 Page 233

Simply Java Chapter 9: Simulation and animation

9.15. Notice that the stop() method has been renamed to userStop(). This was because

when it was named stop() the compiler complained that:
Controller.java [29:1] stop() in Controller cannot override stop() in
java.lang.Thread; overridden method is final

What this means is that the Thread class already has a method with that signature (i.e.
public void stop()), and it is declared final, so it cannot be overridden. You will never
have to declare any methods final (in the context of introductory programming), so you
may safely ignore this, but you do need to learn how to cope when you bump into this
kind of error message. The rule is, when an error message says "...cannot override...", or
"...access type...", then you have stumbled on a method declared in a superclass. The
simplest solution is to rename your method.

Code Example 9.15

1 private boolean running=true;
2
3 public void go() {
4 running = true;
5 }
6
7 public void userStop() {
8 running = false;
9 }
10
11 public void run() {
12 for(;;) {
13 if (running)
14 step();
15 pause();
16 }
17 }

Modifications to make the run method stoppable
Line 1: Declares a boolean variable named running whose initial value is true (so the

simulation will start when run() starts).
Lines 3-5: The go() method sets running to true.
Lines 7-9: the userStop() method sets running to false. Java would not allow a method named

stop() in a Thread (since there already was one declared final).
Line 13: Guards the step() message; it is only sent if running is true.

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 234

That’s all you need to know to make it start and stop. Do that now. Then return here to
learn how to accomplish it with only one Button.

h) Starting and stopping with only one Button

Using one Button to stop the simulation and another to restart it works, but it is not very
elegant. You can unclutter your GUI by writing code to make your Button a toggle
switch. Light switches are sometimes push button toggles; if the light is on, pushing the
switch turns it off, if it is off, pushing the switch turns it on. Here’s how to do that in Java.

The Button must do one of two things; make the Controller stop if it is going, or go if it is
stopped.. The construct in Java that does either one thing or the other, is if-else. So,
logically the actionPerformed() method might be as in Code Example 9.16; if the

simulation is currently running, send the Controller the userStop() message, otherwise
send go().

One’s first idea might be to add a boolean variable in the Applet to keep track of whether
the Controller is currently running, and set it to the same value as the running variable in
the Controller. This is a natural mistake. The problem is that having two different
variable keeping track of the same information creates an unnecessary situation where
bugs can occur. There will be plenty of bugs no matter what; not reason to encourage
them!

The Controller already knows whether the simulation is running. The job of the Applet is
to manage the GUI and pass along information to the Controller. When it needs to know
if the Controller is running, it should ask it (and then set the toggleButton’s label
appropriately). The logic of changing the state of the Controller belongs in the Controller.

Code Example 9.16

1 private void toggleButtonActionPerformed(java.awt.event.ActionEvent evt) {
2 if (the simulation is running)
3 theController.userStop();
4 else theController.go();
5
6 change the label on the Button to say what it does now
7}

Logic of actionPerformed() for a toggle Button

CS231 Spring 5 Page 235

Simply Java Chapter 9: Simulation and animation

Thus, when the toggleButton is pushed, it should send a toggle() message to the
Controller it change the label on the toggle Button to reflect what action will be
performed if it is pushed. See Code Example 9.17 for how to do these two things. Notice

that there are no {}s around the statements after the if and else parts. If you wanted to do
two (or more) things in either the if or else parts you must put {}’s around them to make
the two statements into one, syntactically.

Code Example 9.17

1 private void toggleButtonActionPerformed(java.awt.event.ActionEvent evt) {
2 theController.toggleRunning();
3
4 if (theController.getRunning())
5 toggleButton.setLabel("stop");
6 else toggleButton.setLabel("go");
7 }

Making a toggle Button
Line 2: Toggle the running variable in the Controller.
Lines 4-6: An if-else. Notice that both the if and else parts have only one statements so they do

not need to be enclosed in {}s.
Lines 5: Sets the Button label to "stop"; since theController is running.
Lines 6: Sets the Button label to "go".

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 236

The Controller class must be modified to add these two new methods, but you can
eliminate two methods at the same time. See Code Example 9.18 for the changes.

D. Recapitulation
To do animation in Java you must spawn a separate Thread. To do this you must create a
class that extends Thread, create an instance of it and send it the start() message. The
Thread:start() method spawns the new Thread and then sends run() to your class; the
new Thread exists until run() returns.

Discrete time simulation advances time by some fixed amount each step. Each modelled
object has a set of state variables with completely determine its state in the context of the
simulation. A transition function calculates the next state of each thing in the simulation
from its previous state variables (and possible those of other things in the simulation).

Code Example 9.18

1 private boolean running=true;
2
3 public boolean getRunning() {return running;}
4
5 public void toggleRunning() {
6 running = !running;
7 }
8
9 public void run() {
10 for(;;) {
11 if (running)
12 step();
13 pause();
14 }
15 }

Controller modifications to support the toggle Button
Line 3: The accessor for running.
Lines 5-7: The toggleRunning() method replaces go() and userStop().
Lines 6: Set the value of running to the opposite of what it was before. The ! operator is called,

not. Not true is false, not false is true.
Compare to Code Example 9.15 on page 233, which it replaces.

CS231 Spring 5 Page 237

Simply Java Chapter 9: Simulation and animation

Boolean variables are used to store information when the only possible values are true
and false. Boolean expressions are used to determine whether to execute the if part of if
statements.

E. Conclusion
This chapter introduced two powerful techniques, simulation and animation. It also
introduced Java Threads. Simple animations can greatly improve your GUIs. Simple
simulations can provide interesting demonstrations. It also presented a java toggle switch
to allow the user to control the simulation.

F. End of chapter material

i) New terms in this chapter
iteration - another word for repetition. See the next chapter for iterative constructs. 219
spawned - technical term for created; used only for Threads. When a new thread of control

is initiated, i.e. begins execution, it is said to be spawned. 212
thread of control - the sequence of statements executed when a program executes. A tem-

poral map of where control resides during execution. 210
toggle - a two state switch which changes state each time you activate it 228

ii) Review questions
 9.1 What are boolean variables used for?
 9.2 Where do boolean expressions appear in Java?
 9.3 What is Thread short for?
 9.4 If your program has two Threads and is executing on a single CPU machine, since

only one instruction can be executed at a time, how can both Threads be running at
the same time?

 9.5 What is the job of the transition function in a discrete time simulation.
 9.6 What are the two unary operators?

iii) Programming exercises
 9.7 Experiment with Buttons; setLabel() looks exactly like an accessor; try out

getLabel().
 9.8 A Button is a Component (like an Applet, or a Frame). You saw setBounds() sent to

a Frame... try sending it to a Button. What happens?

Simply Java Chapter 9: Simulation and animation

CS231 Spring 5 Page 238

 9.9 Modify your code so that the Ball can be throw to start the simulation. All that is
needed is an additional initializing constructor that takes two additional parameters,
the x-velocity and y-velocity.

 public Ball(int x, int y, int r, Color c, int vx, int vy) {
 this(x,y,r,c);
 this.vx = vx;
 this.vy = vy;
 }

Then you can initialize the ball in the Controller with:
 theBall = new Ball(10,100,20,Color.RED, 2, -20);

For this to work, you must update the x-coordinate in Ball:step()
 9.10 Add code to keep the Ball in the box. It’s just like the bounce code except you must

check for hitting the other sides of the box.
 9.11 Add another Ball (or two) going in a different initial direction. Add 5!
 9.12 Modify your code so that it create a pattern like on the back cover of this text. All

this requires is adding an update(Graphics g) method to the Applet that simply sends
paint(g), as shown in Code Example 9.19. An explanation can be found in

"repaint(), paint() and update()" on page 351.

Code Example 9.19

1 public void update(Graphics g) {
2 paint(g);
3 }

BallApplet:update(Graphics)
Add this method to prevent update() from filling a rectangle the size of the drawable area in

the background color before sending paint().

CS231 Spring 5 Page 239

Chapter 10: Reading and writing files

A. Introduction

i) File I/O
Almost every sophisticated program reads and writes files. Toy programs can run without
file input or output, but without file I/O, your programs cannot permanently store
information, or access information stored on disk. Until you can do file I/O, you don’t
really know how to program; no, it’s more like you are crippled -- or perhaps you are like
a pre-literate culture, unable to record information that can be recovered later.

Input and output (I/O) are always idiosyncratic. They are always a messy, fiddly, aspect
of programming. Folklore has it that fully half the code in a major project is for the GUI.
File I/O is simpler, but requires careful thinking and can be incredibly frustrating until it
works. This chapter will introduce file I/O and a very helpful class for parsing input,
java.util.StringTokenizer.

ii) The Model-View-Controller pattern
A common (and useful) technique in any complex program is to collect all the I/O into
one place. This makes it easier to find and change; and if the program is ever transported
to a new context, all the I/O changes can be made at once. This technique is also part of
the Model-View-Controller pattern in Design Patterns (a ground breaking book that
identified a number of patterns that occur over and over in software -- it is highly
recommended if you intend to go on in computing). The View is what the user interacts
with, the GUI in many cases. The Model is the program and its data; in a database
application the database itself is the model. The Controller is the interface between the
two.

iii) On ignorance, stupidity, and utilities
Language evolves constantly. People are born without language, and learn whatever
language is spoken around them. They associate words they hear with concepts in their
experience; and often make mistakes doing so. New words enter the language, new
usages of old words appear; that’s why this is not in Latin, or Italian -- the Roman culture
spread and regional dialects turned into French, Spanish, even English.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 240

In contemporary American usage, the words "ignorance" and "stupidity" seem have
become conflated. When a first grader quickly answers, "What is 7 times 7?", with, "49!",
someone might exclaim, "Aren’t you smart!". Knowing facts about multiplication isn’t an
indication of intelligence, but rather of memory. Intelligence and memory are different; in
the same way that algorithms and data are different; just as method bodies and values of
variables are different. Confusing the two (process and content) only leads to more
confused thinking (or calamity and disaster, depending on circumstances).

Intelligence is the ability to learn, and to be able to flexibly apply what you’ve learned in
novel situations. Knowledge is the stuff you’ve learned. They are different. Completely.
Everyone is born entirely ignorant. Ignorance can be cured; it is totally normal to not
know something you have never studied. On the other hand, intelligence is genetic; you
get what you get. Slugs (common in my garden) can never be frustrated, or bored, or
learn to program, or write poetry, or fall in love; they just don’t have enough brain cells
for it. People do.

How people understand the world, or language, depends on what experiences they have
had. No one knows everything, and everyone believes many things that are false. For
instance, imagine that you played Monopoly as a child, and learned the word "utilities" in
that context (Monopoly has two properties called "The Utilities", which are Waterworks,
and The Electric Company) you might imagine that "utility" was just an abstract noun,
like "animal". Years later, if you found yourself in a remote cabin without any utilities;
and you chopped wood for the fire, carried water from the spring, you might discover that
it took the whole day just to feed yourself. Then you might realize that utilities are really,
really useful -- they have utility.

What’s the point of that story? Java has a package, java.util.*; that has some very
useful utilities. Several will be presented here. You have a choice, you can learn to use
them, or you can spend the whole day chopping wood, tending the fire and carrying
water! Oh, and also, don’t feel bad about lacunae in your knowledge structure; everyone
has them -- you can fill them in if you choose.

B. The programming task
Your task for this chapter is to write a Java program to copy one file to another, deleting
all the words with less than 4 letters. The user should be able to select the input and
output files. Put as many words on each line of the output file as fit without making any
line longer than 80 characters. Ignore punctuation (i.e. treat punctuation as letters).

CS231 Spring 5 Page 241

Simply Java Chapter 10: Reading and writing files

This task requires knowing how to do four things: 1) input from a file (of the user’s
choice), 2) output to a file, 3) break lines from a file into individual words, and,
4) determine the length of a String. The last is easy: aString.length(); the other three
will be addressed directly.

C. java.util.StringTokenizer

i) Isolating the I/O
You saw, in "Decoupling the output" on page 210, the technique of sending each String
to be output to a method called emit(). This technique makes it simple to redirect the
output; instead of finding and changing every System.out.println, you simply change
emit().

To similarly simplify input, one thinks of the input as a stream of tokens. A token is the
smallest meaningful unit of input. What is meaningful depends, as always, on the context.
It might be letters, or words, or numbers or something else. A tokenizer converts the
input into a stream of tokens that are then used by the next component in the program.

There are a number of classes in java.util that are very useful (That’s why they are called
"utilities"!), including: Vector, Iterator, Hashtable, and StringTokenizer. The first three
will be introduced in the next two chapters; the last, immediately. To break up a String
into a series of smaller Strings (tokens), StringTokenizer is the class to use.

ii) Simplest example
The Sun documentation (http://java.sun.com/j2se/1.4.2/docs/api/) includes the following
example:

The following is one example of the use of the tokenizer. The code:
 StringTokenizer st = new StringTokenizer("this is a test");
 while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
 }

 prints the following output:
 this
 is
 a
 test

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 242

This is mostly self-explanatory, assuming you are familiar with constructors, while loops,
and realize what the StringTokenizer methods do. The constructor,
new StringTokenizer(String), creates a StringTokenizer that will separate the String it is
passed into a number of tokens; it breaks the String at each space, so if there are no
spaces it will only return a single token (the entire String). Each time you send the
tokenizer nextToken(), it will return the next token, as long as there is one (if you send
nextToken() to a StringTokenizer that is out of tokens, it will throw an Exception). To
check if there are more tokens to be had, use hasMoreTokens(); it returns true just if the
tokenizer has more tokens. These two methods are well named and once you understand
what they do StringTokenizer is very easy to use.

iii) Sample exam question
Here is the kind of question you might expect on an exam in a CS1 class.

Write a method which is passed a String and prints each word in it on a separate
line. Assume words are separated by spaces.

Could you answer such a question? If the answer is "yes", feel free to skip this next
section.

a) Making progress without thinking very hard - or, Syntax is your friend!
When writing a method, there are a number of things which can be done even if you have
no idea what the logic of the method will be. The method body contains the algorithm
that method implements; it may require careful, creative thinking. The heading, by
contrast, is mostly syntactic.

The question says it is passed a String and outputs to System.out, so you can write the
heading with almost no thought, as shown in Code Example 10.1. On an exam, that

Code Example 10.1

1 void printOneWordPerLine(String input) {
2
3 }

Using syntax to your advantage
Knowing that the method is passed a String and returns nothing, you can write this much with

minimal thought.

CS231 Spring 5 Page 243

Simply Java Chapter 10: Reading and writing files

would get you lots more points than an empty space, and while you were writing it you
could be thinking about how to implement it.

b) Writing the body of the method

Logically, the method will output a line for each word in the input, so there will be a
System.out.println() in a loop with initialization at the top. The example from the Sun
documentation, above, does almost exactly what is needed and can be copied almost
verbatim, as in Code Example 10.2. This is a fine solution, but there are many other ways

you could write this method. It could also be written as a for loop, as shown in Code
Example 10.3. Make sure you understand how this for loop works, it’s a bit of a trick (see

"The for statement" on page 199 if you need to refresh your memory on the syntax of a

Code Example 10.2

1 void printOneWordPerLine(String input) {
2 StringTokenizer st = new StringTokenizer(input);
3 while (st.hasMoreTokens()) {
4 System.out.println(st.nextToken());
5 }
6 }

The complete method
The only change needed from the Sun documentation example is to use the parameter being

sent into the method as the parameter to the StringTokenizer constructor.

Code Example 10.3

1 void printOneWordPerLine(String input) {
2 for (StringTokenizer st = new StringTokenizer(input);
3 st.hasMoreTokens();
4 System.out.println(st.nextToken())); // empty loop body
5 }

An equivalent (if peculiar) for loop
This does the same thing, but it is rather peculiar. Recall that a for loop heading has three parts.

Here, the initialization instantiates the StringTokenizer; the continuation condition is
exactly the same as in the while loop; and the update does the output. The loop body is
an empty statement. See the next example for a more readable version.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 244

for loop). Sometimes programmers do things like this, because they can. For a more
ordinary usage, see Code Example 10.4.

iv) The other StringTokenizer constructors

a) Delimiters beside spaces
Sometimes you want to use other characters besides just spaces to delimit tokens. For
instance if a user typed in:

John,Mary,Frank,Sue

and you used the default constructor, you would only get one token, namely the String:
"John,Mary,Frank,Sue"

when what you wanted was four tokens: "John", "Mary", "Frank", and "Sue".
Fortunately StringTokenizer includes another constructor which will give you just that.

The line:
StringTokenizer st = new StringTokenizer("John,Mary,Frank,Sue");

is functionally equivalent to:
StringTokenizer st = new StringTokenizer("John,Mary,Frank,Sue", " ");

The second parameter is all the characters that you wish the StringTokenizer to use as
delimiters. It very likely that the one argument constructor is implemented as shown in

Code Example 10.4

1 void printOneWordPerLine(String input) {
2 for (StringTokenizer st = new StringTokenizer(input);st.hasMoreTokens();)

3 System.out.println(st.nextToken());
4 }

An equivalent, ordinary for loop
This does the same thing in a more usual form. Here, the initialization and the continuation

condition are exactly the same; and the update does nothing. The loop body does the
output, as you might expect.

CS231 Spring 5 Page 245

Simply Java Chapter 10: Reading and writing files

Code Example 10.5. This is a standard technique to make coding and maintenance simple

(see "this()" on page 116).

So, if you say:
StringTokenizer st = new StringTokenizer("John,Mary,Frank,Sue", ",");

the tokenizer will return the tokens "John", "Mary", "Frank", and "Sue".
Unfortunately, if the input were "John Mary Frank Sue", the tokenizer will return just
one token "John Mary Frank Sue". This can be solved by using " ," as the second
parameter:
StringTokenizer st = new StringTokenizer("John,Mary,Frank,Sue", " ,");

That would work with either input.

b) Delimiters as tokens

Using either of those constructors, you never see the delimiters; but, sometimes you want
to. For instance, say you were reading input and wanted to replace certain abbreviations
with what they stood for and preserve the punctuation. Then you would need to know
what the delimiters had been (so you could output them). The third constructor does this
with a third parameter, a boolean; if it is true, it will return the delimiters as tokens. So:
StringTokenizer st = new StringTokenizer("A,B, C,DEF.", " .,", true);

Code Example 10.5

1 public StringTokenizer(String input) {
2 this(input, " ");
3 }

Implementation of StringTokenizer(String)
The one argument constructor very likely is implemented by invoking the two argument

constructor, using just a space for the second argument.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 246

would return the sequence of tokens: {"A", ",", "B", " ", "C", ",", "DEF", "."}.
Chances are the two parameter constructor is implemented as shown in Code Example
10.6.

StringTokenizer is a very handy class, but it is quite simple. For complicated tokenizing
you should use a StreamTokenizer, but not today!

D. The MyReader class

i) Why MyReader?
There are many classes in Java that do I/O. Too many for beginners. It is a remarkable
class structure that was designed to handle I/O from just about anywhere: the web, the
keyboard, or files (compressed or uncompressed). It is worthy of the time to learn; but
not here. For now you just want to input files one line at a time, with a minimum of
effort. Here is a class called MyReader to read files easily without having to catch
exceptions (here is a link to the Sun Tutorial on exceptions during compilation of file
input code:
http://java.sun.com/docs/books/tutorial/essential/exceptions/firstencounter.html
By using MyReader, you can avoid that). MyReader can read either from wherever the
user specifies on the local machine (if it runs from an Application), or from the directory
an Applet loaded from.

ii) Echoing a user specified file
The first thing to do when you are trying to process a file, is to make sure you can read it.
The easiest way to do that is to read it in and display it on the screen; this is referred to as

Code Example 10.6

1 public StringTokenizer(String input, String delimiters) {
2 this(input, delimiters, false);
3 }

Implementation of StringTokenizer(String, boolean)
The two argument constructor very likely is implemented by invoking the three argument

constructor, using false for the third argument.

CS231 Spring 5 Page 247

Simply Java Chapter 10: Reading and writing files

echoing the file. Code Example 10.7 shows how to echo a file with a MyReader.

That’s all there is to it. You might want to adjourn to the keyboard and try that out, to
convince yourself that it works and that you understand how to use it. Don’t forget that
you must be running an Application to read from files (see "Creating a GUI Application"
on page 334). Now to the internals of MyReader.

iii) MyReader internals
The MyReader class is essentially a wrapper for the BufferedReader class, along with a
method that uses a FileDialog to allow a user to select a file at runtime. A wrapper is a
class that exists to hold a class or a data item without adding much functionality.
Wrappers are written to make working with a class or data simpler for the user and/or the
programmer.

Code Example 10.7

1 MyReader mr = new MyReader();
2
3 while (mr.hasMoreData()) {
4 System.out.println(mr.giveMeTheNextLine());
5 }
6
7 mr.close();

Echoing a file with MyReader
Reads each line from whatever file the user specifies, and echoes each to System.out.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 248

a) MyReader: constructors, imports, and wrapped variable
Code Example 10.8 is the beginning of MyReader. Notice that it has just one variable, a

BufferedReader (a class in java.io), called br (for the first letters of Buffered and Reader).
It is declared private for two reasons: to make it clear that it is only used from within this
class, and to prevent any other code from modifying or accessing it. A MyReader is
essentially a more convenient form of a BufferedReader. There are three constructors.
The default constructor opens whatever file the user wants (see "Opening the file" on
page 249). If you pass a filename as a String, it will open that. From an Applet, pass a

Code Example 10.8

1 import java.io.*;
2 import java.awt.*;
3 import java.net.*;
4 import java.applet.*;
5
6 public class MyReader {
7
8 private BufferedReader br;
9
10 public MyReader() {
11 openIt(getFileName());
12 }
13
14 public MyReader(String filename) {
15 openIt(filename);
16 }
17
18 public MyReader(String filename, Applet theApplet) {
19 try {
20 URL theURL = new URL(theApplet.getDocumentBase(), filename);
21 InputStreamReader isr = new InputStreamReader(theURL.openStream());
22 br = new BufferedReader(isr);
23 } catch (Exception e) {System.out.println("MyReader -- bad file

from net" + e);}
24 }

Beginning of MyReader
There is just one variable, the BufferedReader that MyReader is the wrapper for. The imports

are needed for: BufferedReader, FileDialog, URL, and Applet, respectively.

CS231 Spring 5 Page 249

Simply Java Chapter 10: Reading and writing files

filename and this, and it will read from the directory the Applet bytecode is in. Recall
that Applets can only read from there.

b) Opening the file

Code Example 10.9 shows the two methods that are used by the constructors to open the
file. The getFileName() method is very useful if you ever want to prompt a user for a file

to read; feel free to copy it. It is amazing the first time you use a FileDialog; it was so
easy! If you omit line 36, the FileDialog will be invisible. Line 36 is a bit unusual in that
it does not finish execution until the user closes the FileDialog. The Dialog box the
FileDialog opens is modal, so like many Panels it seizes control of the Thread and refuses
to relinquish it (until closed). Notice there are two parts to a complete path-name (line
37); the directory and the filename.

The openIt(String) method has the incantation to open a file for reading. Notice the
nested constructor on line 27 (this line does all the work of this method). This is a good
example of how constructors are used in object programming (see "Constructors" on
page 111).

Code Example 10.9

25 void openIt (String filename) {
26 try {
27 br = new BufferedReader(new FileReader(filename));
28 } catch (Exception e) {
29 System.out.println("MyReader -- can't open " + filename + "!" + e);
30 }
31 }
32
33 String getFileName() {
34 FileDialog fd = new FileDialog(new Frame(), "Select Input File");
35 fd.setFile("input");
36 fd.show();
37 return fd.getDirectory()+fd.getFile(); // return the complete path
38 }
39

MyReader:openIt(String) and getFileName()
openIt(String) has the magic that creates a BufferedReader to read a file one line at a time.
getFileName() uses a FileDialog to get a filename from the user at runtime.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 250

c) Reading and closing the file

Code Example 10.10 has the three methods that show MyReader to be a wrapper. Notice

that inside the try/catch block, close() just sends close() to the BufferedReader;
hasMoreData() simply returns br.ready(); and giveMeTheNextLine() returns
br.readLine(). The advantage of using MyReader is that you don’t have to worry about
the try-catch blocks around those three methods (which are annoying). Notice also that
MyReader has hasMoreData() and giveMeTheNextLine() whereas StringTokenizer has
hasNext() and nextToken(). Perhaps it would be easier to remember the method names in
MyReader if they were more like those in StringTokenizer. You could just change the
names in MyReader, but if you had old code that used the old names, it would break (not

Code Example 10.10

40 public String giveMeTheNextLine() {
41 try {
42 return br.readLine();
43 } catch (Exception e) {System.out.println("MyReader -- eof?!" + e);}
44 return "";
45 }
46
47 public boolean hasMoreData() {
48 try {
49 return br.ready();
50 } catch (Exception e) {System.out.println("MyReader -- disaster!" + e);}
51 return false;
52 }
53
54 public void close() {
55 try {
56 br.close();
57 } catch (Exception e) {System.out.println("MyReader: can't close!" + e);}
58 }
59 } // MyReader class

MyReader:giveMeTheNextLine(), hasMoreData() and close()
These methods just send readline(), ready(), and close() to the Buffered Reader. They

bracket them with try-catch blocks, as required. This way, the programmer does not
have to use try-catch in the code that uses the MyReader

Line 44: Is required, since if the readLine() throws an exception, something needs to be
returned.

Line 51: Same thing.

CS231 Spring 5 Page 251

Simply Java Chapter 10: Reading and writing files

that you couldn’t change all the names, it’s just time consuming). Another solution is to
write wrappers for the methods with new names, as shown in Code Example 10.11.

iv) Emitting the tokens one per line
Now that you understand StringTokenizer and MyReader, it should be simple to modify
the file echo code (Code Example 10.7 on page 247) to output one word on each line. Do
that now. You can find the MyReader class at:
http://www.willamette.edu/~levenick/SimplyJava/io/
After you solve the problem, then look at Code Example 10.12 to see how the author did
it. No fair peeking! It really does help you to learn if you actually type in, compile and
execute little sample programs. At least if you’re like most people; if you just read code,
it doesn’t stick -- but, if you run it and modify it and wrestle with it a bit, you can

Code Example 10.11

60 public String nextLine() {
61 return giveMeTheNextLine();
62 }
63
64 public boolean hasNext() {
65 return hasMoreData();
66 }

MyReader:nextLine(), and hasNext()
These methods don’t add any functionality; they just wrap other methods with different names.

You might do this if you wanted to use the shorter, more familiar names.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 252

remember it later. Okay, here’s the code to solve that little problem. It turns out, that with
the printOneWordPerLine() method to be, well, trivial!

E. Writing to a file
It is simple to write to a file if you use the MyWriter class (it is simple enough without it
as well). Code Example 10.13 shows how to write two lines into whatever file the user
selects. The MyWriter class (which is in the directory with MyReader) has only three

methods, println(String), print(String), and close(). It is important to close files
after you finish working with them; otherwise sometimes the data in them cannot be read
correctly (although sometimes it makes no difference).

Code Example 10.12

1 MyReader mr = new MyReader();
2
3 while (mr.hasMoreData()) {
4 printOneWordPerLine(mr.giveMeTheNextLine());
5 }
6
7 mr.close();

Printing the words in a file one on each line
The printOneWordPerLine() method from Code Example 10.2 on page 243 does just what

we need. Ain’t software reuse great?

Code Example 10.13

1 mw = new MyWriter();
2
3 mw.println("Hello...");
4 mw.println("Here's the second line of a file");
5
6 mw.close();
7

Writing to a file using a MyWriter
A tiny test of a MyWriter.

CS231 Spring 5 Page 253

Simply Java Chapter 10: Reading and writing files

 The MyWriter class is shown in Code Example 10.14. Like MyReader there are

constructors with and without a filename specified as a parameter. The openIt() method
has the magic nested constructor to open a file for writing. The print() and println()
methods do what they do in System.out, which, by the way, is a PrintStream. Notice on

Code Example 10.14

1 import java.awt.*;
2 public class MyWriter {
3 protected PrintWriter pw;
4
5 public MyWriter() {
6 openIt(getFileName()); }
7
8 public MyWriter(String filename) {
9 openIt(filename); }
10
11 void openIt (String filename) {
12 try {
13 pw = new PrintWriter(new FileWriter(filename));
14 } catch (Exception e) {System.out.println("Can't open " + filename + "!" + e);}

15 }
16
17 public void print(String s) {
18 pw.print(s); }
19
20 public void println(String s) {
21 print(s+"\n"); }
22
23 public void close() {
24 pw.close(); }
25
26 private String getFileName() {
27 FileDialog fd = new FileDialog(new Frame(), "Output File", FileDialog.SAVE);
28 fd.setFile("output");
29 fd.show();
30 return fd.getDirectory()+fd.getFile(); // return the complete path
31 }
32}

MyWriter
You probably don’t need to know how this works, but making sure you do will be good review

of the various Java constructs.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 254

line 27, that there is a third parameter in the FileDialog constructor; this allows you to
enter a filename that does not yet exist.

F. Putting it all together
You have all the pieces to accomplish the task. You must still decide where to filter out
the short words. There are several place you might do this:
1. As soon as you get the tokens from the StringTokenizer
2. In emit() (assuming you are using emit() -- you can leverage the code from Code

Example 8.22 on page 212 with one minor alteration).
3. In a filter that sits in front of emit().
Here’s how that last choice might be implemented. In the loop where you are reading
tokens from the input file and writing them to the output file, instead of sending
emit(nextToken), you might send emitIf(nextToken) where emitIf() is as in Code
Example 10.15. This has two advantages: 1) The emit() method may be left untouched.

That way its logic does not need to be cluttered up with deciding whether to emit the
word or not, it just does what its name says, emits. 2) If you want to implement some
other filtering scheme (like only printing words that begin with ’x’, or whatever), you can
make the changes in emitIf() and not have to look anywhere else.

Still, maybe it would be easier to put that if statement in the method where you are
getting the tokens. Maybe. It could be argued though, that writing an emitIf() method is
cleaner and easier to understand and modify later. Plus, mixing the filtering criteria with
the input violates the principle of having I/O code do nothing but I/O.

Code Example 10.15

1 public void emitIf(String s) {
2 if (s.length() > 4)
3 emit(s)
4 }

emitIf(String)
By encapsulating the print criteria in a method, it is easy to find and change later, plus there’s

no need to alter emit(String).

CS231 Spring 5 Page 255

Simply Java Chapter 10: Reading and writing files

G. Conclusion
This chapter introduced file I/O, the StringTokenizer class, and two convenience classes,
MyReader and MyWriter. They simplify reading and writing files, by: 1) wrapping up the
Exception laden BufferedReader and PrintWriter classes from the java.io package, and
2) utilizing a FileDialog to prompt the user for input and output files.

H. End of chapter material

i) New terms in this chapter
echo a file - to read a file and display it on the screen 243
file I/O - file input and output 235

ii) Review questions
 10.1 What is a token?
 10.2 What are the two StringTokenizer methods?
 10.3 What are the three StringTokenizer constructors?
 10.4 What is a wrapper?
 10.5 When might you wrap a method?
 10.6 What is a FileDialog used for?

iii) Programming exercises
 10.7 Write a small test Application to experiment with a FileDialog. Print the Strings

that come back from getDirectory() and getFile().
 10.8 Comment out the imports in MyReader, one at a time and see what compiler error

you get.
 10.9 Write a fourth constructor of MyReader, namely MyReader(Applet), that prompts

the user and opens whatever file they choose. Hint: the body is a single line of code.
 10.10 Imagine you are using the code in Code Example 10.12 on page 252, but

something is going wrong with the input. Modify that code to echo each line input
(with descriptive text, like: "And the next line is : ==> <== tokens follow:".

 10.11 Maybe you’re tired of typing System.out.println all the time, and would rather just
type out.println. You can do this by declaring an instance variable of type
java.io.PrintStream called out. Do that in a class and test it out.

 10.12 Maybe you’re tired of typing System.out.println("whatever") all the time, and
would rather just type emit("whatever"). You can do this by declaring an
emit(String) method. Do that in a class and test it out.

Simply Java Chapter 10: Reading and writing files

CS231 Spring 5 Page 256

 10.13 Maybe you’re tired of typing System.out.println("whatever") all the time, and
don’t want to have to declare emit(String) in every class, but would rather just
declare it once. Create a class, called, say, MyUtils and make emit() a class method
in it (see "Class methods" on page 167 if you’ve forgotten how). Then you can just
say MyUtils.emit("whatever") in any class. Do that.

 10.14 Write an Application that creates 10 files named junk0, junk1, junk2,...,junk9. The
file junk0 should have just one line with a "0" on it; junk1 should have the lines

0
1

and junk9 should have the lines
0
1
2
3
4
5
6
7
8
9

Don’t forget to close those files! Close your program and open those files in the
NetBeans editor. Note: you will need to mount the directory they are in first. Hint:
you must specify a directory (see getFilename() in MyWriter. One way to learn the
directory you are reading/writing from would be to modify the getFilename() code to
send the directory out to System.out when you select a file in the current directory.
Then you could copy that back into the program.

The following refer to the file copy program.
 10.15 Modify the file copy program to ignore punctuation in determining whether a

word is long enough. I.e. as the program stands it would copy "this", because, with
the quotes it has length 6.

 10.16 Add a GUI control so if the user chooses the program will remember that last file
read and read from it every time the user pushes the Read button. Hint: you will need
to store the file name/path and use the MyReader(String) constructor if they want to
reread.

 10.17 Add a Choice to allow the user to select the minimum word length to copy. I.e.
allow them to output only words with 5 letters or more, or 8.

CS231 Spring 5 Page 257

Chapter 11: Data structures

A. Introduction
Up until now, we have been declaring variables one at a time. But, sometimes you want
10, or 1000 variables. If you were implementing software for a real bank, it might have
thousand of accounts. If you wanted to program an army of 100 snowpeople, it would he
hopeless to write 100 statements for each action you wanted them to perform. A big
advantage of computing is that the machine doesn’t mind doing the same thing over and
over thousands of times. Data structures allow you to declare and store as many variables
as you need with a minimum of effort. This chapter will show you how to use two similar
data structures, array and Vector.

B. Arrays
Arrays are part of most programming languages. An array is a list of variables, all with
the same type and name, but distinguished by an index. The declaration:

int [] anArray = new int[100];

declares 100 variables of type int, all named anArray[something], where something is an
int between 0 and 99. Thus, the first int variable is named anArray[0], the next,
anArray[1], and the hundredth, anArray[99]. Each one acts exactly like an int variable,
because each one is an int variable.The value in the square brackets is called teh index. It
may be a constant, but usually it is a variable.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 258

i) Simplest examples
Code Example 11.1 declares an array of five ints and then displays them to System.out.

The loop on lines 3-5 is a standard method of accessing the elements of an array one at a
time; it is said to "iterate over the elements of the array". As you can see (by the output),
they are autoinitialized to zero when the array is declared.

Code Example 11.1

1 int [] list = new int[5];
2
3 for (int index=0; index<5; index++) {
4 System.out.println("index=" + index + " list[index]=" + list[index]);
5 }

index=0 list[index]=0
index=1 list[index]=0
index=2 list[index]=0
index=3 list[index]=0
index=4 list[index]=0

Declaring and printing an array of five ints: code and output
Line 1: declares an array, called list, of five ints.
Line 2: a for loop to iterate over the five elements of the list
Line 4: inside the loop, since index will take on the values 0-4, in order, list[index] will be the

five different int variables (in order, each time around the loop).

CS231 Spring 5 Page 259

Simply Java Chapter 11: Data structures

If you want values besides zero in the array element, you must put them there, as shown
in Code Example 11.2.

Code Example 11.2

1 int [] list = new int[5];
2 list[0] = 7;
3 list[3] = 33;
4
5 for (int index=0; index<5; index++) {
6 System.out.println("index=" + index + " list[index]=" + list[index]);
7 }

index=0 list[index]=7
index=1 list[index]=0
index=2 list[index]=0
index=3 list[index]=33
index=4 list[index]=0

The same array with list[0] set to 7 and list[3] to 33: code and output
Line 2: assign the value 7 to the first element of the array
Line 3: ...and 33 to the fourth

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 260

Code Example 11.3 illustrates setting the values of the array in a loop. It uses the current

value of the index squared as the value stored in each element.

Code Example 11.3

1 int [] list = new int[5];
2 for (int i=0; i<5; i++) {
3 list[i] = i*i;
4 }
5
6 for (int i=0; i<5; i++) {
7 System.out.println("i=" + i + " list[i]=" + list[i]);
8 }

i=0 list[i]=0
i=1 list[i]=1
i=2 list[i]=4
i=3 list[i]=9
i=4 list[i]=16

The same array with each element set to the square of its index
Line 3: assign each element the value of the square of its index

Notice that "i" stands for "index".

CS231 Spring 5 Page 261

Simply Java Chapter 11: Data structures

ii) Printing a String backwards
Arrays may be of any type, primitive, built-in or user defined. An array of chars could be
used to print a string backwards as shown in Code Example 11.4. If length() and

charAt() seem unfamiliar you might look back at "A few String methods" on page 207.

Code Example 11.4

1 char [] letters = new char[100];
2 String s = "pals";
3 for (int i=0; i<s.length(); i++) {
4 letters[i] = s.charAt(i);
5 }
6
7 System.out.println("frontwards, it's: ");
8 for (int i=0; i<s.length(); i++) {
9 System.out.println("i=" + i + " letters[i]=" + letters[i]);
10 }
11
12 System.out.println("backwards, that's: ");
13 for (int i=s.length()-1; i>=0; i--) {
14 System.out.println("i=" + i + " letters[i]=" + letters[i]);
15 }

frontwards, it's:
i=0 letters[i]=p
i=1 letters[i]=a
i=2 letters[i]=l
i=3 letters[i]=s
backwards, that's:
i=3 letters[i]=s
i=2 letters[i]=l
i=1 letters[i]=a
i=0 letters[i]=p

Printing a String forwards and backwards, one char per line
Lines 3-5: assign each char in the String to an element of the array
Lines 7-10: print them frontwards
Lines 12-15: and backwards

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 262

To print the String frontwards and backwards, all on the same line, just change the
printlns to prints and remove some of the text, as in Code Example 11.5.

iii) An array of Accounts
If you were writing a bank simulation with 1000 Accounts, you could declare an array
like this:

Account[] accountList = new Account[1000];

This will give you 1000 Account variables, each initialized to zero, which, when the
variable is a reference (as any Object variable is), is interpreted as null. Thus, if you wish
to have 1000 Accounts in those 1000 Account variables, you must do the second step of
instantiating them all; like this:

for (int i=0; i<1000; i++)
 accountList[i] = new Account();

If you forget to do this (and, everyone does when they start working with arrays of
Objects), you will be confronted with Null Pointer Exceptions the first time you send a
message to one of them; and if you’re not paying attention, it could be very confusing.
Don’t forget!

Code Example 11.5

1 char [] letters = new char[100];
2 String s = "pals";
3 for (int i=0; i<s.length(); i++) {
4 letters[i] = s.charAt(i);
5 }
6
7 System.out.print("the word ");
8 for (int i=0; i<s.length(); i++) {
9 System.out.print(letters[i]);
10 }
11
12 System.out.print(" backwards, is ");
13 for (int i=s.length()-1; i>=0; i--) {
14 System.out.print(letters[i]);
15 }

the word pals backwards, is slap

Printing a String forwards and backwards, all on one line
Lines 3-5: assign each char in the String to an element of the array
Lines 7-10: print them frontwards
Lines 12-15: and backwards

CS231 Spring 5 Page 263

Simply Java Chapter 11: Data structures

Although this could work, it is better to use Vectors for lists of Objects.

C. Vector and Iterator
Java provides the Vector class to keep track of lists of objects. A Vector stores a list of
variables of type Object. Thus it can store any type of object, since very object is an
instance of some class and every class extends Object (directly or indirectly). This is very
convenient, but has a downside. When you get objects back out of the list, the complier
considers them to be of type Object. So, it will only allow messages that are defined in
Object to be sent to them. To pacify it you must cast the Object to whatever type it
actually is, as will be shown directly.

Vector has a number of useful methods, but to start we will focus on just two:
add(Object) and iterator(). That will be enough to demonstrate that we can add things
to the list and access them in order.

i) add(Object)
To add an Object, any Object at all, to a Vector, use add(Object); i.e. simply send the list
the add() message with that object as a parameter. The object will be added to the end of
the list. For example, to make a list containing three Accounts, you could say:

 java.util.Vector theList = new java.util.Vector();
 theList.add(new Account("xena", 1234567));
 theList.add(new Account("abe", 100));
 theList.add(new Account("bea", 10000000));

Then first Account would be xena’s, the last bea’s.

ii) iterator()
Iterators have only two methods, hasNext() and next(). The former tells if there are any
more items, the latter hands back the next one; it works just like StringTokenizer (odds
are StringTokenizer is a wrapper for an iterator initialized by its constructor).

To access each item in a Vector, from first to last in order, use an Iterator, like this.

1 for (Iterator theIterator=theList.iterator(); theIterator.hasNext();) {
2 Account nextAccount = (Account) theIterator.next();
3 System.out.println("\n\nnext account..." + nextAccount);

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 264

4 }

The form of this loop is always the same; it is an idiom. The initialization declares a
variable, theIterator, of type Iterator and initializes it to all the items in theList, by
sending theList the iterator() message and storing what it returns (the for loop is
described at "The for statement" on page 199). The loop continues as long as the Iterator
has any more Objects.

Line 2 above:
 Account nextAccount = (Account) theIterator.next();

illustrates a generic technique used when iterating over a set of Objects. Each time
around the loop, it gets the next Object from the Iterator, casts it as an Account and stores
it in an Account variable named nextAccount. Once there, you can send it any message
Account defines. If the Object returned from the Iterator is not an Account, it will throw a
Class Cast Exception.

In English, this loop iterates over the Vector called theList; each time around the loop it
stores the next Account from the list in the nextAccount variable, and then (implicitly)
sends it toString(); whatever toString() returns is the parameter to System.out.

iii) Simplest test program
As usual, to convince yourself that a programming technique works and, more
importantly, to become familiar with it before trying to use it for anything difficult, you
should write a tiny test program. There are many ways one might do this, but here it is

CS231 Spring 5 Page 265

Simply Java Chapter 11: Data structures

done with an Application, as shown in Code Example 11.6. Adjourn to the keyboard,

input and run this program. It will require that there is an Account class in that directory
(you could use the Classmaker to generate one, or look around and find the one you used
before).

That’s all you need to know to use a Vector. The next example will use a Vector as the
database for a bank simulation.

Code Example 11.6

1 import java.util.*;
2
3 public class VectorTest {
4
5 Vector theList;
6
7 /** Creates a new instance of VectorTest */
8 public VectorTest() {
9 theList = new Vector();
10 theList.add(new Account("xena", 12345));
11 theList.add(new Account("abe", 100));
12 theList.add(new Account("bea", 10000000));
13
14 for (Iterator it=theList.iterator(); it.hasNext();) {
15 Account nextAccount = (Account) it.next();
16 System.out.println("\n\nnext account..." + nextAccount);
17 }
18 }
19
20 /**
21 * @param args the command line arguments
22 */
23 public static void main(String[] args) {
24 new VectorTest();
25 }
26}

Simplest use of a Vector
Lines 9-16: Add three Accounts to a Vector and print them.
Line 24: Create a VectorTest which will invoke the default constructor and so run the test code

in lines 9-16.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 266

D. A simple bank database
According to dictionary.com, database means, "A collection of data arranged for ease and
speed of search and retrieval.". Thus a database management system, or DBMS, is
software that manages a collection of data. Somehow that’s not as impressive sounding as
"database management system". So it goes.

i) The database
In the simple Bank program in Chapter 3, the database consisted of three Account
variables. There were always exactly three Accounts and the only thing a user could do
was select the current account and withdraw money from it. It was hardly a database at
all. The bank database here will have a variable number of Accounts. The bank
administrator will be able to add, delete, or edit accounts, and then save the changes to
disk. The data structure used will be a list of all the Accounts in the Bank. A Vector is
suitable to implement this list.

ii) Inputting the database: load
Assuming there were hundreds or thousands of accounts in a bank, they should not have
to be input by hand each time you start the program. Even for a small test bank DBMS,
you would not want to type in all the data every time you run the program. Instead,
account information should be stored on disk, in files. Program initialization would
include inputting the database. An obvious place to input the database would be in the
Bank constructor.

a) File format
The code to read the data from the file will expect it in a particular order and format.
There are many ways to write files, but if they are human readable, then they are easy to
maintain (since you can simply edit them!). Thus, MyReader and MyWriter from Chapter
10 are well suited for this job.

It doesn’t really matter what format the data is stored in, but you must decide what that
format will be. For simplicity, let’s store the data for each Account on one line; first the
name of the person, then the balance, with spaces in between. So, if there were 4
Accounts, the file might look like:
 Amy 17
 Zoe 9898
 Joe 98
 Bea 1000000

CS231 Spring 5 Page 267

Simply Java Chapter 11: Data structures

If there were more data fields, like an account number, or social security number,
address, phone number, ATM number and password; they could be appended. Two fields
is enough for illustrative purposes.

b) Encapsulation! Input in the Account constructor

The code to open the file and build the database belongs in the Bank class (since that
Bank will be working with the database). Conceptually, it will look something like Code
Example 11.7. Your first idea might be to write the inside of the loop as shown in Code

Example 11.8. Code Example 11.8 is the inside of the loop from Code Example 11.7 with

the pseudocode mde into comments and the actual code written beneath it. The use of
pseudocode as comments for the actual code is good form; you can type the pseudocode
right into the class and then comment it out as you implement it. That way the compiler
will remind you if you haven’t implemented everything (since the pseudocode will
generate compiler errors) and the comments will remind you what you were thinking
when you wrote it. Logically, Code Example 11.8 is impeccable (assuming mr is a

Code Example 11.7

1 while (more data in the input file) {
2 read the data for the next account
3 create and store the new account
4 }

Pseudocode for reading and building the database

Code Example 11.8

5 // read the data for the next account
1 StringTokenizer st = new StringTokenizer(mr.giveMeTheNextLine());
2 String name = st.nextToken();
3 int balance = Integer.parseInt(st.nextToken());
4
5 // create and store the new account
6 theList.add(new Account(name, balance);

First idea for inputting and creating the accounts in that loop.
This is the inside of the loop in Code Example 11.7 (the details of lines 2 and 3). Like many

first ideas, this one has some problems.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 268

MyReader and has been properly initialized). But, it violates the principal of
encapsulation. What if later, more fields are added to the Account class? Then it would
be necessary to edit the Bank class as well. It would decouple Bank and Account better,
and be simpler for the programmer adding the fields to Account, if all the changes could
be made in Account.

The standard technique to accomplish this is to write a constructor that is passed the input
stream, and that reads the data it needs from that, as shown in Code Example 11.9. To

Code Example 11.9

1 Account(MyReader mr){ //empty default constructor
2 StringTokenizer st = new StringTokenizer(mr.giveMeTheNextLine());
3 name = st.nextToken();
4 balance = Integer.parseInt(st.nextToken());
5 }

Account(MyReader) constructor
Reads and stores information for one Account from the parameter. By doing the I/O for

Account in Account, encapsulation is increased and the programmer’s job is
simplified.

CS231 Spring 5 Page 269

Simply Java Chapter 11: Data structures

test this code (stepwise implementation!) use the Bank class in Code Example 11.10.

Notice the display() method. It is written as a method (instead of just a loop) so it can be
reused; and uses the idiom to iterate over an Vector. Line 15 would also be good to focus
on; this is the line where the database is constructed -- oddly enough. It adds one new
Account to the list, by invoking the Account(MyReader) constructor (which reads the
information for this Account from the file associated with the MyReader, mr). Since it is
in a while loop, it will read all the account information, one at a time and store them all in
the list, in the same order as they were in the file. That’s a lot of functionality for one line,
and elegantly done (although, likely aesthetics are personal).

Code Example 11.10

1 import java.util.*;
2
3 public class Bank {
4 private Vector accountList;
5
6 /** Creates a new instance of Bank */
7 public Bank() {
8 accountList = new Vector();
9 inputAccounts();
10 }
11
12 private void inputAccounts() {
13 MyReader mr = new MyReader();
14 while (mr.hasMoreData()) // read and store database
15 accountList.add(new Account(mr));
16
17 displayAccounts();
18 }
19
20 private void displayAccounts() {
21 for (Iterator it=accountList.iterator(); it.hasNext();)
22 System.out.println(it.next());
23 }

Minimal proto-Bank class
Reads, stores and displays a database from a user selected file. Written to test input, storage and

retrieval of a database of Accounts.
Line 15: Reads in the entire file and stores it in the database!

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 270

iii) Outputting the database: save
To test the save method (once we have written it!), one line can be added, as shown in
Code Example 11.11. Can you tell which class this method goes in? If you don’t know,

answer this question; "What type does the BankDBMS() method return?". It is not specified.
Ordinary methods must specify a return type, or void if there is none (see "return types"
on page 102). Since there is no return type, this must be a constructor, and the name of a
constructor is the name of the class it appears in.

Code Example 11.11

1 public BankDBMS() {
2 initComponents();
3 setBounds(100,100,500,500);
4 theBank = new Bank();
5 theBank.save();
6 }

Testing the Bank:save() method
 Line 5 will output the database to a file of the user’s choice.

CS231 Spring 5 Page 271

Simply Java Chapter 11: Data structures

c) Bank:save()

Save seems a good name for a method that saves the database to a file. The Bank must
iterate over the Vector that is the internal database and write each Account to the disk
file. A MyWriter will do the job perfectly; see Code Example 11.12.

d) File format

The file format is entirely arbitrary, but it must be compatible with the input method. The
input method expects first the name and then the balance on one line separated by at least
one space.

A common pitfall is to write into the same file you are reading from before the save()
code is completely debugged. Then the next time you try to read the data, your program
crashes. You can ameliorate this by writing to a different file, or making a backup of the
input file (before trashing it!).

Code Example 11.12

1 public void save() {
2 MyWriter mw = new MyWriter();
3
4 for (Iterator it=accountList.iterator(); it.hasNext();) {
5 Account nextAccount = (Account) it.next();
6 nextAccount.save(mw);
7 }
8
9 mw.close();
10 }

Bank:save()
 Iterates over the account list, sending each Account the save(MyWriter) message. Don’t

forget to close the file when done with it!

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 272

e) Encapsulation: Output in the Account class

Just as input is best done within the class, so is output. Code Example 11.13 is the save()

method -- tough work, eh? This looks (and is) simple, but if it were written as,
mw.println(name + balance); what would have gone wrong? Attention to detail while
programming will save hours of frustration.

iv) Enhancing the DBMS
We now have a DBMS that loads and saves a list of Accounts. Its only usefulness is to
demonstrate that we can do that. There are many things you might do to enhance such a
database. The most obvious are to allow the user to select an account and withdraw or
deposit funds. Other functions include adding and deleting Accounts, changing
information in an Account, and transferring funds between Accounts.

a) Adding a java.awt.Choice
Back in Chapter 3 you selected the current Account by pushing one of three buttons. If
there are dozens or hundreds of Accounts, that would make a very cluttered GUI. A
Choice would be a better choice. As the name implies, it is a Component for allowing the
user to make a choice between a number of options. Follow the instructions in "Adding
and using a Choice" on page 338 to add one to your Application.

Following those instructions will give you a Choice with "this", "that" and "the other
thing" in it. What you want in it for the Bank database is the names from all the
Accounts. The easiest place to add them is when you read in the Accounts, in
Bank:input(); that means you will need access to the Choice there. The easiest way to
have a reference to it there is to pass it as a parameter with the Bank constructor (see
Code Example 11.14). Remember, the Bank class will not know what Choice is unless
import java.awt.*; is added. Notice that the reference to the Choice is passed along as a
parameter to inputAccounts().

Code Example 11.13

1 public void save(MyWriter mw) {
2 mw.println(name + " " + balance);
3 }

Account:save(MyWriter)
 Not much to it. Simply print the name and balance with a space between them.

CS231 Spring 5 Page 273

Simply Java Chapter 11: Data structures

b) Selecting an Account given a name

Like in the Chapter 3 example, Bank will have a withdraw(int) method that withdraws
the amount passed in the parameter from the current account. This will require that there
is a variable containing a reference to the current Account; so it must be declared and
initialized. It cannot be initialized until after the database is read in, so the logical spot to
do that is right after input; see Code Example 11.14. The elementAt(int) method returns

Code Example 11.14

1 import java.util.*;
2 import java.awt.*;
3
4 public class Bank {
5 private Vector accountList;
6 private Account currentAccount;
7
8 /** Creates a new instance of Bank */
9 public Bank(Choice theChoice) {
10 accountList = new Vector();
11 inputAccounts(theChoice);
12 currentAccount = (Account) accountList.elementAt(0);
13 }
14
15 private void inputAccounts(Choice theChoice) {
16 MyReader mr = new MyReader();
17 while (mr.hasMoreData()) {
18 Account newAccount = new Account(mr);
19 accountList.add(newAccount);
20 theChoice.addItem(newAccount.getName());
21 }
22 mr.close();
23 }
24
25 public void withdraw(int withdrawalAmt) {
26 currentAccount.withdraw(withdrawalAmt);
27 }

Initializing theChoice and currentAccount.
Line 11: Fills it with Accounts and initializes theChoice (see line 20).
Line 12: Initializes currentAccount to the first thing in the Vector. Note the cast; remember

why?

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 274

the Object at the ith position in the Vector. The first position in the Vector is 0, just like
an array. The cast is required for the assignment on line 12, since you cannot assign an
Object to an Account. The (Account) persuades the compiler that it should do the
assignment; see "iterator()" on page 263 if this seems unfamiliar.

When the user selects a new name from the choice, presumably the code looks something
like Code Example 11.15. Notice that the type of item is String, so on the Bank side the

setCurrentAccount() method will have a String parameter and will have to search
through all the Accounts looking for one with that name. As always, to iterate through a
Vector, copy and paste the Iterator loop; see Code Example 11.16. This code will work,

Code Example 11.15

1 private void newChoice(java.awt.event.ItemEvent evt) {
2 String item = theChoice.getSelectedItem();
3 System.out.println("new choice from the choice: " + item);
4 theBank.setCurrentAccount(item);
5 displayCurrentBalance();
6 }

itemSelected handler for theChoice
Line 2: get the selected item
Line 3: diagnostic; delete when the code works
Line 4: the point of this example
Line 5: so the user can always see the balance of the current Account

Code Example 11.16

1 public void setCurrentAccount(String name) {
2 for (Iterator it=accountList.iterator(); it.hasNext();) {
3 Account nextAccount = (Account) it.next();
4 if (nextAccount.getName().equals(name))
5 currentAccount = nextAccount;
6 }
7 }

Bank:setCurrentAccount(String)
Iterate over the Accounts, and if one is found with the parameter as its name, set

currentAccount to it.

CS231 Spring 5 Page 275

Simply Java Chapter 11: Data structures

but could be improved in two ways. First, the loop will continue through the entire list
even if it finds the name in the first Account; so it will waste fewer cycles if it exits the
loop as soon as it finds the name (although, since searching the entire list takes less than a
millisecond, this hardly matters). Second, if it never finds the name, that’s a bug, and it
would be good to report the problem, instead of blithely ignoring it. Code Example 11.17
fixes both of these by returning when the name is found and complaining if control falls
out the bottom of the loop without having found the name. This loop with an internal
return is an idiom that is worthwhile remembering; you will see it again (assuming you
continue on in computing!).

c) Editing an Account

Part of database management is the ability to modify the data, both to correct errors, and
simply to update changing information. This may be done by the software (like updating
the balance when money is withdrawn) or by hand (like changing a misspelled name).
Conceptually here’s what to do to allow editing.

1. Add an edit button (it’s action is to tell the Bank to edit).
2. Open a new window to edit the current account.
3. Reflect changes the user makes in the edit window in the database.

Step 1 is easy, you know how to add and connect a Button. The other two steps need
some explaining.

Code Example 11.17

1 public void setCurrentAccount(String name) {
2 for (Iterator it=accountList.iterator(); it.hasNext();) {
3 Account nextAccount = (Account) it.next();
4 if (nextAccount.getName().equals(name)) {
5 currentAccount = nextAccount; // found it
6 return; // exit the method NOW!
7 } // if
8 } // for
9
10 System.out.println("Error! Name not found! name=" + name);
11 }

Bank:setCurrentAccount(String) improved
Line 4-7: If the name is found, set currentAccount and exit the method.
Line 10: Complain about not finding it; realize it will only get here if line 6 never executes.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 276

• Opening a new window

Opening a new window is very useful when you wish to present or input information
under certain circumstances, but don’t want to clutter up the GUI. Displaying a new
Frame is described in "Adding a pop-up Frame" on page 336.

• Editing from the new window

Once you have created a GUI Frame Form, you can use the FormEditor to add TextFields
for each field in the Account to be edited; as of now that would just be name and balance.
Rename them and connect them so that you get control when the user hits enter in them.

NetBeans will write the shell of the event handling code, but you must write the code to
do the editing. When the user enters a change in the name TextField, you would like to
simply set the name of the current account to what they have entered, as shown in Code
Example 11.18. If you simply type this code, the compiler will inform you that it cannot

resolve the symbol "theAccount", and for good reason; it is not declared in this class!
You could declare it as an instance variable (Account theAccount;), and then it would
compile; unfortunately at runtime this, alone, would generate a Null Pointer Exception --
again for good reason, since you have never changed the default null. Some people find
themselves stuck at this point.

The solution is obvious if you think carefully. Or maybe draw a picture? Figure 11.1
depicts the data structure after the program has read in those four Accounts from before

Code Example 11.18

1 private void nameTFActionPerformed(java.awt.event.ActionEvent evt) {
2 theAccount.setName(nameTF.getText());
3 }

Editing the name field
Changing the value of the name in theAccount. But, how to access the currentAccount back in

the Bank from the EditFrame?

CS231 Spring 5 Page 277

Simply Java Chapter 11: Data structures

and the user has selected "Zoe" with the Choice and pressed the Edit Button. The

problem is that theAccount in theEditFrame is null. It should have been set to point to
Zoe’s Account, which is the currentAccount back in theBank. How could this information

Figure 11.1

 The state of the program when the user hits edit.
The Application has a theBank variable which has a database of Accounts, a current account,

and an EditFrame. When the user pushes the Edit Button, an EditFrame is opened; but,
how can the EditFrame get access to the current Account?

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 278

be passed from theBank to theEditFrame? You already know, right? Either with an
accessor, or as a parameter to the constructor. That easy.

Once we have access to the current account from the edit window, Code Example 11.18
will work perfectly. The code to update the balance is similar, except that the String from
the TextField must be converted to an int (see "String to int" on page 123 if it has slipped
your mind).

• Error checking

The code above assumes that the user will type a legal int into the balanceTF in the
EditFrame. What if they accidently type some letters? Try it out. It throws an Exception.
It would be good to catch that Exception. It would also be nice to read the values from
both TextFields whenever the user hits enter (imagine how annoying it would be to type a
new name an balance, hit enter, and only update the balance). But, that is deferred to the
exercises; it’s just details.

E. Molecules in box

i) The programming task
In Chapter 9 a single ball bouncing under the influence of gravity was simulated. The
task for this section is to simulate a number of molecules in a box. Most of the code from
the BallApplet can be leveraged for this new task.

ii) The Molecule class
The Ball class checked for bouncing on the floor, but not on the ceiling or the two side
walls. Thus, the Molecule class will need to check for those other three cases as well.
Perhaps you are ready to write that code now; in that case, do it, and when you’re done go
on to "Changes to the Controller" on page 288. Otherwise read on.

a) Designing the bounce code
The code to check whether a Molecule will collide with any of the four walls on this time
step is a little bit complicated. Whenever you are writing code that is not simple, it is
important to think clearly before starting, otherwise you can waste many frustrating hours
debugging, sometimes with nothing to show for it when you are done.

CS231 Spring 5 Page 279

Simply Java Chapter 11: Data structures

First, you need a clear conception of the problem. Second, you need to formulate a simple
way to solve the problem. Start with a simple approach that you understand, or writing
and debugging the code is likely to be a disaster.

Two problem solving techniques spring to mind here: Draw a Picture, and Analysis By
Cases; if those don’t seem familiar, you might want to review them before continuing (see
"Draw a picture." on page 75 or, "Analysis By Cases (ABC)" on page 161). Then, using
the picture for the bottom as a model (see Figure 9.1 on page 228), draw the pictures for
the top, right and left.

b) Applying ABC

• Step 1: Distinguishing the cases

Now, apply the ABC technique. Use the pictures you have drawn for the first step. Once
you have decided how to determine which of the five cases is applicable, then you can
decide what to do in each case. Only then should you start writing code.

Are there really five cases? At least. The molecule may bounce on any of the four walls
this time step, or none. That makes five cases. Perhaps there are four more cases:
bouncing off the left and top, the left and bottom, right and top, and right and bottom. It
is possible to check the four bounce cases so as to handle all eight cases; nevertheless it is
something to keep in mind.

• Step 2 - Deciding on actions for each case

The action required in each case is similar. If the molecule would hit the wall this time
step, reverse its velocity (x or y, depending) and calculate its position after the bounce.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 280

c) Writing the code

• Adapting the Ball bounce code

You already have code for the floor bounce (see Code Example 11.19). Odds are you can

adapt this code for the other three cases. Take a minute to review this code and get it in
your head so you’ll know how to modify it. ... Okay. Give it one more try... Huh. Maybe
you can’t make head nor tail of that code. Not good. Too much tricky code. Sorry about
that. Perhaps the way to make it make sense of it is by using stepwise refinement (see
"Stepwise refinement" on page 41).

• Stepwise refining the bounce code

Let’s start with the step() method for Molecule without worrying about whether the
Molecule will hit the wall. It simply updates the x and y-coordinates and the y velocity of

Code Example 11.19

1 public void step() {
2 x += vx;
3
4 int bottomY = 750-(radius+y);
5 if (vy >= bottomY) {
6 //System.out.println("vy=" + vy + " y=" + y);
7 int bounceHt = vy - bottomY; // how high it bounces this step
8 y = 750 - (radius + bounceHt); // y-coord after this step
9 vy = -(vy-1)*9/10;
10 }
11 else {
12 y += vy;
13 vy += GRAVITY;
14 }
15}

The Ball:step() improved? (Copied from: Code Example 9.12 on page 231)
Line 7: Calculate how far it will travel up after bouncing
Line 8: From that calculate the new y-coord of the center
Line 9: Reverse vy and subtract 1 to avoid endless small bounces.

CS231 Spring 5 Page 281

Simply Java Chapter 11: Data structures

the Molecule, as shown in Code Example 11.20. One of the reasons step() in the

previous example is complicated is that the code for step() and bounce() is intertwined.
These two parts can be separated as shown in Code Example 11.20. Here the use of

methods with descriptive names makes the logic clear. The downside is that now the

Code Example 11.20

1 public void step() {
2 x += vx;
3 y += vy;
4 vy += g;
5 }

Molecule:step() without considering bounces

Code Example 11.21

1 public void step() {
2 if (!willHitWall()) {
3 x += vx;
4 y += vy;
5 vy += GRAVITY;
6 }
7 else bounce();
8 }

Molecule:step() considering bounces
If the Molecule will not hit the wall this step just update x, y, and vy; otherwise it bounces.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 282

willHitWall() and bounce() methods must be written. Code Example 11.20 shows those

two methods. Notice that both of them depend on willHitSide() and
willHitTopOrBottom(). The Molecule will hit a wall just if it hits a side wall or the top or
bottom; thus willHitWall() returns that. The bounce() method may have to handle a
bounce in the y-direction or the x-direction, or both. If it were written as an if-else, it
would fail in the cases where the Molecule were going to hit two walls on the same time
step.

Code Example 11.22

1 private boolean willHitWall() {
2 return willHitSide() || willHitTopOrBottom();
3 }
4
5 private void bounce() {
6 if (willHitTopOrBottom())
7 handleYBounce();
8 if (willHitSide())
9 handleXBounce();
10 }

willHitWall() and bounce()
Lines 1-3: willHitWall() returns true just if willHitSide() or willHitTopOrBottom is true.
Lines 5-10: handles a y-bounce, or an x-bounce, or both

CS231 Spring 5 Page 283

Simply Java Chapter 11: Data structures

There are now four more methods that need to be written (stepwise refinement tends to
generate a number of methods). They are shown in the next two listings. Code Example

11.23 has the two methods that detect upcoming bounces. The logic is the same for both,
so only the first of the four will be explained. If the y-component of velocity is
downwards (i.e. if vy > 0, see line 2) then it would hit the bottom in the next time step
just if the distance it will move in the y direction (vy) is more than the distance to the

Code Example 11.23

1 private boolean willHitTopOrBottom() {
2 if (vy > 0) {
3 return vy > distanceToBottom();
4 }
5 else {
6 return -vy > distanceToTop();
7 }
8 }
9
10 private boolean willHitSide() {
11 if (vx > 0) {
12 return vx > distanceToRightWall();
13 }
14 else {
15 return -vx > distanceToLeftWall();
16 }
17 }

checking for upcoming bounces
Two methods to tell whether a Molecule would hit the wall this time step.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 284

bottom (line 3). The distances are calculated by the methods in Code Example 11.24.

Refer to your pictures to make sure these make sense. You will notice the use of WIDTH
and HT in these methods. You no doubt recall that identifiers in all caps are constants
(see "Case conventions" on page 128). It is better to define variables for values like this
to avoid embedding numbers like 750 in the code (as was carelessly done in the first
version of step() in Ball). The reason is, if you change the size of the display, it will be

Code Example 11.24

1 private int distanceToBottom() {
2 return HT-(radius+y);
3 }
4
5 private int distanceToTop() {
6 return y-radius;
7 }
8
9 private int distanceToRightWall() {
10 return WIDTH - (x+radius);
11 }
12
13 private int distanceToLeftWall() {
14 return x-radius;
15 }

Calculating the distance to the wall the Molecule is headed towards.
Four methods that implement the four distance cases.

CS231 Spring 5 Page 285

Simply Java Chapter 11: Data structures

done automatically (instead of having to search for the numbers that represent the size of
the display in various classes. This is accomplished as shown in Code Example 11.25.

The only remaining methods are handleXBounce() and handleYBounce(). The logic of
these two methods is a little tricky. The author got it wrong twice and spent more hours
than he wants to admit to to get it right. There are still four cases to consider (two in each

Code Example 11.25

1 // from MoleculeApplet.java
2 public class MoleculeApplet extends java.applet.Applet {
3 Controller theController;
4 public static final int WIDTH=900;
5 public static final int HT=900;
6
7
8 // from Molecule.java...
9 public class Molecule extends FilledCircle {
10 private int HT=MoleculeApplet.HT;
11 private int WIDTH=MoleculeApplet.WIDTH;
12 private double ELASTICITY=1.0;
13

Setting and accessing the display dimensions.
WIDTH and HT are declared static and public in Molecule, so they are accessible from

everywhere (as shown on lines 10 and 11).

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 286

method. The logic for calculating the new values for x and y is shown in Code Example

11.27. The only remaining question is how to calculate the distance the Molecule

Code Example 11.26

1 handleYBounce() {
2 case 1: bottom -- y = HT - reboundDistance() - radius;
3 case 2: top -- y = reboundDistance() + radius;
4
5 handleYBounce() {
6 case 3: right -- x = WIDTH - reboundDistance() - radius;
7 case 4: left -- x = reboundDistance() + radius;

Pseudocode for handling bounces
Logically, if it hits the top or the top or the left the new position is just the distance it rebounds

plus the radius. In the other two cases the rebound distance and the radius must be
subtracted from the wall position.

CS231 Spring 5 Page 287

Simply Java Chapter 11: Data structures

rebounds on this time step. If you care about that detail, it is included in Code Example

11.27. The 9/10’s should be ELASTICITY, but if it is declared as:
 int ELASTICITY = 9/10;

something terrible happens. Do you know what? See Code Example 5.16 on page 124 for
a clue. And if it is declared as
 double ELASTICITY = 0.9;

then it will not compile unless vx * ELASTICITY is cast as an int; like this:
 vx = (int) (-vx * ELASTICITY);

Which clutters up the code (although it would be okay to do).

Finally we are done writing Molecule and can turn to testing it.

Code Example 11.27

1 private void handleYBounce() {
2 if (vy >= distanceToBottom()) {
3 y = HT - (vy - distanceToBottom()) - radius;
4 vy = - (vy-1)*9/10;
5 }
6 else { // top
7 y = -vy -(distanceToTop() - radius) + radius;
8 vy = -vy * 9/10;
9 }
10 }
11
12 private void handleXBounce() {
13 if (vx > 0) // right wall
14 x = WIDTH - (vx - (WIDTH - x - radius)) - radius;
15 else x = -vx - (x-radius) + radius;
16
17 vx = -vx * 9/10;
18 }

handleYBounce() and handleXBounce()
The detailed code to handle bounces; finally the stepwise refinement bottoms out!. To

understand this code, draw a careful picture. Or ignore it, it’s hardly pivotal to
understanding computing.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 288

iii) Changes to the Controller

a) A single Molecule
To make the Controller from the BallApplet simulate and animate a single Molecule
instead of a Ball is very simple. The changes needed are shown in Code Example 11.28.

All that has been done is to replace Ball with Molecule everywhere. The methods that are
unaffected are omitted.

b) Many Molecules

To make the Controller simulate and animate many Molecules is slightly more
complicated. Instead of a Molecule variable, it needs a Vector (which will contain all the

Code Example 11.28

1 import java.awt.*;
2 import java.applet.*;
3
4 public class Controller extends Thread {
5 private Applet theApplet;
6 private Molecule theMolecule;
7 private boolean running=true;
8
9 /** Creates a new instance of Controller */
10 public Controller(Applet theApplet) {
11 this.theApplet = theApplet;
12 theMolecule = new Molecule(10,40,20,Color.RED, 1, -5);
13 }
14
15 public void paint(Graphics g) {
16 theMolecule.paint(g);
17 }
18
19 private void step() {
20 theMolecule.step();
21 theApplet.repaint();
22 }
23

Modified Controller from the BallApplet
This Controller is very similar to the one in Code Example 9.7 on page 224; the differences are

that every Ball has been replaced by a Molecule.

CS231 Spring 5 Page 289

Simply Java Chapter 11: Data structures

Molecules). Then, everywhere the original code did something with a Molecule, the new
code must iterate over all the Molecules. There are three methods that need to be
changed, the constructor, paint() and step().

• Changes to the constructor

Code Example 11.29 shows the changes needed to create and store NUM_MOLECULES

Molecules in a Vector. Notice that they all start at the same place, are the same color and
size, but have random velocities. The use of rand(int) requires that it be defined (see
Code Example 5.19 on page 126 for a reminder). You might want to experiment with
random sizes and colors once the code is working.

Code Example 11.29

1 public Controller(Applet theApplet) {
2 this.theApplet = theApplet;
3 for (int i=0; i<NUM_MOLECULES; i++)
4 addOneMolecule();
5 }
6 }
7
8 private void addOneMolecule() {
9 theList.add(new Molecule(100,100,20,Color.RED, rand(7), rand(7)));
10 }

Changes to the constructor
Line 2: Loop NUM_MOLECULES times (if you have questions about this, see Code

Example 8.6 on page 198).
Line 3: Each time around the loop, uh, add one Molecule.
Lines 8-10: The addOneMolecule() method.
Line 9: Create a red Molecule at 100, 100, radius 20, with random vx and vy (between 0 and 6)

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 290

This code assumes that NUM_MOLECULES and theList are defined, and that
java.util.* is imported: see Code Example 11.30 for the changes needed at the

beginning of Controller.

• Changes to paint() and step()

The paint() method for the bouncing ball had just one line:
 theMolecule.paint(g);

To make it instead send paint(g) to every Molecule in the list requires an Iterator in a
loop, as shown in Code Example 11.31. The changes required for step() are very similar;

Code Example 11.30

1 import java.awt.*;
2 import java.applet.*;
3 import java.util.*;
4
5 public class Controller extends Thread {
6 private final int NUM_MOLECULES=20;
7
8 private Applet theApplet;
9 private Vector theList = new Vector();
10 private boolean running=true;
11
12

Changes to the beginning of Controller
Line 3: imports java.util so that Vector and Iterator are defined.
Line 6: declare the constant NUM_MOLECULES to be 20.
Line 9: declare and initialize a Vector called theList.

Code Example 11.31

1 public void paint(Graphics g) {
2 for (Iterator it=theList.iterator(); it.hasNext();) {
3 Molecule nextMolecule = (Molecule) it.next();
4 nextMolecule.paint(g);
5 }
6 }

Modified paint() to paint every Molecule in the list
Uses the idiom for iterating over all elements of a list (see "iterator()" on page 263).

CS231 Spring 5 Page 291

Simply Java Chapter 11: Data structures

instead of sending step() to theMolecule, it must be sent to every Molecule in the list;
see Code Example 11.32.

iv) Experimenting with the program
Having made those changes, the program is ready to run. Experiment with different
elasticities, turning off gravity, different delay times, different ranges of velocities, or
different numbers of molecules. How many molecules can there be before it stops
looking like animation? Note: if you wish, you may access the code at:
http://www.willamette.edu/~levenick/SimplyJava/code/molecules/
It would be more educational to write it yourself, but if you don’t have the time or
inclination, experimenting with my code is better than nothing.

F. Conclusion
This chapter introduced Vector and Iterator from java.util, Choice and Frame from
java.awt, and techniques to read/write a database from/to disk files. It included a lot of
new material and combined most of the material from the previous chapters to make two
substantial programs. If you understand both of those examples well, congratulations! If
not, condolences; you might consider rereading and working through the chapter again.
Or, perhaps, doing the exercises will help solidify your understanding.

G. End of chapter material

i) Review questions
 11.1 What are the two methods you use with an Iterator?
 11.2 How do you add an Object to the end of the list in a Vector?

Code Example 11.32

1 private void step() {
2 for (Iterator it=theList.iterator(); it.hasNext();) {
3 Molecule nextMolecule = (Molecule) it.next();
4 nextMolecule.step();
5 }
6 theApplet.repaint();
7 }

Modified step() to step every Molecule in the list
Like the previous Example, this again uses the idiom for iterating over the elements of a list.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 292

 11.3 Write the idiom to access every Object in a Vector and send it to System.out.
 11.4 How were the 9 ways a Molecule could bounce collapsed into 5? What are those 5?

ii) Programming exercises
The next exercises refer to the BankDBMS:
 11.5 Add a Save button. Save to a file the user specifies. Then (after that works) save to

the same file that the database was input from. Hint: save the file name and path
when it is input; one String variable will do it.

 11.6 Modify the EditFrame code so that both the name and balance fields are input and
both the name and balance are updated when the user hits Enter in either. Hint: write
an update() method that is invoked from both.

 11.7 Add error checking code so that if the entered balance is not an int the user is
notified in a reasonable manner; maybe pop up a Panel?

 11.8 Add an addAccount button. You could reuse the EditFrame class to get the info for
the new Account.

 11.9 Add a deleteAccount button. You will find the Vector:remove(Object) method very
useful here; as in theAccountList.remove(currentAccount); Don’t forget to remove
the deleted Account from the Choice. Reading the Sun documentation will help with
both of these.

The next exercises refer to the Molecules program:
 11.10 Take out the -1 in (vy-1) in handleYBounce() inCode Example 11.27 on page 287.

What happens? Explain why. Hint: add debugging printlns to display vy and y at
each step.

 11.11 Add code to catch mouse clicks and when the user clicks on a Molecule, make it
bigger. See "Catching mouse clicks" on page 342.

 11.12 Start with just two large molecules and color them solid red when they are
overlapping. Hint: two circles overlap when the distance between their centers is less
than the sum of their radii.

 11.13 Modify your code to detect overlap in a simulation with n Molecules. Hint: you
will need a loop that checks every pair of Molecules for overlap.

 11.14 Difficult! Modify your code to keep the Molecules from overlapping (it is the
same kind of logic as anticipating bounces off the wall. If two Molecules are going to
overlap, reverse the signs on their vx and vy variables.

 11.15 More difficult! Make the collisions realistic, as if the molecules were billiard balls.
If two Molecules hit head on, they should rebound the way they came, but if they hit
a glancing blow, their directions change in a more complicated way. Don’t forget to

CS231 Spring 5 Page 293

Simply Java Chapter 11: Data structures

conserve momentum! Note: the mass of the Molecules matters -- do large Molecules
have more mass?

The next exercises refer to a completely new different project
 11.16 Fun! Create a crowd of Snowfolk. Make them all melt each day. This should be

just like the Molecules program.
 11.17 More fun! Create a crowd of Snowfolk. Then, when the user clicks on a particular

SnowPerson, make all the rest of the army move to surround that one.

Simply Java Chapter 11: Data structures

CS231 Spring 5 Page 294

CS231 Spring 5 Page 295

Chapter 12: Writing a list class

A. Introduction
The previous chapter illustrated the use of arrays and Vectors to implement lists. There
are many applications where those two generic data structures will do just what you want,
but there are others when it is more convenient to have a list class that serves your needs
more precisely. In that case, writing your own list class makes sense. The next chapter is
about sorting lists of ints. It will be convenient to have a familiar list class with elements
of type int to use there.

This chapter presents two different list classes, one based on an array, the other based on
a Vector; it will be up to you to decide which you like better. The style of this chapter is
rather more terse, and assumes rather more sophistication of the reader, than the earlier
chapters. You are encouraged to try out all of these methods as you go along, if you
actually want to understand them. Or perhaps this is so obvious that you don’t need to?

B. Designing a list class
As always, the first question in designing a class is, "What must it do?". Think about
what you can do with an ordinary paper list. You can add, delete, or replace elements,
and you can read elements from the list. Each of those actions can happen anywhere in
the list; i.e. you can add (or read, or delete, or replace) an element at any position in the
list. If someone asked you how many things were on the list, you could count the
elements. The list we write must be able to do those things; additionally, we will need
toString() and a constructor.

Next, we must settle on the signatures of the methods. Every action involves the position
of the element in the list, so there will be an index as a parameter. Every element in the
list will be of type int, so if an element is being passed in or returned it will have type int
as well. Care must be taken not to accidently exchange the two parameters (since finding
bugs stemming from having the actual parameters in one order and the formal parameters
in the other, can be very elusive).

The signatures of the methods follow:
void addElementAt(int nuElement, int i);

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 296

void deleteElementAt(int i);
int elementAt(int i);
void replaceElementAt(int nuElement, int i);
int length();

Although it is not strictly necessary, a method that adds an element at the end of the list is
also convenient:

void addElement(int nuElement);

These signatures will be common to the two implementations, and would make sense
collected together in an interface, but that will be deferred.

C. Implementation using an array: MyArrayIntList
Since you can add and delete elements, the number of things in the list is variable. An
array must be declared as a fixed size. If you declare an array as
int [] list[] = new int[10]; you have 10 int variables named list[0], list[1], ...
list[9], and no more. The array cannot contain more than 10 ints and if there are less
than 10 int values to store, the rest of the variables are unused. The array examples in
Chapter 11 sidestepped this issue. Here it must be confronted.

i) Managing a variable sized list in an array: representation
One simple technique to manage an array of variable size, is to keep all the elements at
the beginning of the list and add a variable, named last, that keeps track of the index of
the last element in the list. If there is only one element in a list, it will be at list[0] and last
will be 0. If there are three elements in the list, they will be at list[0], list[1], and list[2];
and last will be 2. If the list currently contains {8,1,2}, its state will be as in Figure 12.1.

CS231 Spring 5 Page 297

Simply Java Chapter 12: Writing a list class

If 4 is then added to the end of the list, it will be added at list[3] and last will change to 3,

Figure 12.1

 The state of the list
The list is {8,1,2}. There are three numbers in the list, so last is 2 (the index of the last

number).

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 298

as shown in Figure 12.1. This simple technique allows you to keep track of a variable

sized list using an array. Only one variable, last, is needed in addition to the array.

Assuming you understand this list representation, it is now time to turn to
implementation.

ii) Declarations and initialization
Two variables must be declared and initialized, the array, named list, and the variable that
keeps track of the index of the last element in the list, named last. To make sure the array

Figure 12.2

 The state of the same list after adding 4 to the end.
The list is now {8,1,2,4}. There are 4 numbers in the list, so last is 3.

CS231 Spring 5 Page 299

Simply Java Chapter 12: Writing a list class

will not become full, it is allocated with space for 10000 elements, see Code Example
12.3.

Notice the use of the static final int MAX_VALUE. You may recall that this is how one
defines a constant in Java; final means it cannot be assigned a new value. The constructor
initializes the two instance variables. You may wonder why last is initialized to -1. If so,
a moment’s thought may yield insight; otherwise, this may help you understand it. When
there are 3 things in the list, last is 2; when there are 2 things in the list, last is 1; when
there is one thing in the list, last is 0. I.e. the value of last is always one less than the
number of things in the list. See makeEmpty(), below for a dramatic use of this fact.

iii) Adding an element to the end of the list
To add an element, call it nuElement, to the end of the list, its value should be assigned to
the variable list[last+1]. Since there is now one more thing in the list, last should be
incremented. So, one might write the code as:
 list[last+1] = nuElement;
 last++;

But it would be clearer to increment last first, and then use it directly, as in:
 last++;
 list[last] = nuElement;

Code Example 12.1

1 public class MyIntArrayList {
2
3 private static final int MAX_VALUE = 10000;
4 int [] list;
5 int last; // where is the last thing in this list
6
7 /** Creates a new instance of List */
8 public MyIntArrayList() {
9 list = new int[MAX_VALUE];
10 last = -1;
11 }
12 }

MyIntArrayList: Declaration and initialization of variables.

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 300

Or, shorthand would be to use the pre-increment, as shown in Code Example 12.2:

iv) Adding an element at a particular location
Adding an element at a specific index is a bit more complicated, since first the rest of the
list must be shifted down by one (to get it out of the way). Each element below the index
where the new element will be inserted must be shifted down by one location. After they
have all been shifted the new element may be inserted. Assuming putHereIndex is the
parameter which tells where to insert the new element, every element from last up to
putHereIndex, must be moved down one space. See Code Example 12.3 for how to
accomplish that

Code Example 12.2

1 public void addElement(int nuElement) {
2 list[++last] = nuElement;
3 }

MyIntArrayList:addElement()

Code Example 12.3

1 public void addElementAt(int nuElement, int putHereIndex) {
2 for (int i=last; i>=putHereIndex; i--)
3 list[i+1] = list[i];
4
5 list[putHereIndex] = nuElement;
6 last++;
7 }

MyIntArrayList:addElementAt()

CS231 Spring 5 Page 301

Simply Java Chapter 12: Writing a list class

v) toString()
The toString() method for a list should display all the elements of the list in order. We
have not written an iterator for this list, so Code Example 12.4 shows how to do it by

hand. That for loop is a generic loop for dealing with a list represented with last. In the
context of that loop, list[i] is "each element in the list". Notice the use of {}’s and
commas to format the list a bit. This code has a bug in that with the list {8,1,2}, it returns
"{,8,1,2}". For now the extra comma will be ignored, but will be fixed up in the
exercises.

vi) Deleting an element
When an element in the middle of the list is deleted, all the elements below it must be
shifted up by one position to fill the gap. Code Example 12.5 illustrates how this is done.

After deletion, i.e. shifting all the elements after the deletion point up by one, there is one
less thing in the list, so last must be decremented.

Code Example 12.4

1 public String toString() {
2 String returnMe="{";
3
4 for (int i=0; i<length(); i++)
5 returnMe += "," + list[i];
6
7 return returnMe+"}";
8 }

MyIntArrayList:toString()

Code Example 12.5

1 public void removeElementAt(int removalIndex) {
2 for (int i=removalIndex; i<last; i++)
3 list[i] = list[i+1];
4 last--;
5 }

MyIntArrayList:removeElementAt()

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 302

vii) Replacing an element
Unlike insert, and delete, replace does not require any shifting, so it is just one line, as
shown in Code Example 12.6

viii) length
The length of the list is one more than last, thus length is extremely simple, as in Code
Example 12.7.

ix) Accessing an element
The accessor for an element at a particular location simply returns that element, as in
Code Example 12.8.

Code Example 12.6

1 public void replaceElementAt(int nuValue, int i) {
2 list[i] = nuValue;
3 }

MyIntArrayList:replaceElementAt()

Code Example 12.7

1 public int length() {
2 return last+1;
3 }

MyIntArrayList:length()

Code Example 12.8

1 public int elementAt(int i) {
2 return list[i];
3 }

MyIntArrayList:elementAt()

CS231 Spring 5 Page 303

Simply Java Chapter 12: Writing a list class

x) Making the list empty
Since all operations on the list depend on the value of last, all that is necessary to make
the list empty is to set last to -1, as shown in Code Example 12.9. If this seems

mysterious, draw a picture and make sure you understand what all the methods would do
with last=-1.

D. Implementation using a Vector: MyVectorIntList
The vector class automatically handles lists of variable sizes, so there is no need for our
Vector based class to keep track of that information and we can eliminate the variable
named last. On the other hand, a Vector stores Objects, and int is a primitive type; thus,
to store an int in a Vector it must first be wrapped up in an object. When the wrapper is
taken out of the Vector, the int value must be unwrapped. Fortunately, both those
operations are simple, if mildly annoying.

Java has a built-in int wrapper, named Integer. Given an int variable, x, you can create an
Integer that contains the value of x, by:
new Integer(x);

That’s all it takes.

The Integer class has a method, intValue(), that returns the int value that is stored inside
the Integer.
Integer anInteger = new Integer(17);
int x = anInteger.intValue();
System.out.println("x=" + x);

Will output "x=17".

The My VectorIntList class is what is called an adapter class; it adapts Vector for use
with ints. Every method below, except toString(), has a body with just one line, which
sends the appropriate message to the Vector that MyIntVectorList wraps up. You would

Code Example 12.9

1 public void makeEmpty() {
2 last = -1;
3 }

MyIntArrayList:makeEmpty()

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 304

do well to glance at the documentation for Vector before reading the next section; either
at the Sun site, or in the IDE.

i) Declarations and initialization
Since this class uses a Vector, java.util.* must be imported, but initialization consists
only of instantiating the Vector, see Code Example 12.10.

ii) Adding an element to the end of the list
Vector has an addElement(Object) method, so all that has to be done is wrap the int in an
Integer, as shown in Code Example 12.11:

Code Example 12.10

1 import java.util.*;
2
3 public class MyIntVectorList {
4
5 Vector list;
6
7 /** Creates a new instance of List */
8 public MyIntVectorList() {
9 list = new Vector();
10 }

MyIntVectorList: Declaration and initialization of the variable.

Code Example 12.11

1 public void addElement(int nuElement) {
2 list.addElement(new Integer(nuElement));
3 }

MyIntVectorList:addElement()

CS231 Spring 5 Page 305

Simply Java Chapter 12: Writing a list class

iii) Adding an element at a particular location
Vector has an addElementAt(Object, int) method, so that can be used, once the int is
wrapped, as shown in Code Example 12.12.

iv) toString()
The toString() method can use Vector’s iterator(), as shown in Code Example 12.13.

Aside from that, this is identical with Code Example 12.4, including the extra leading
comma bug.

Code Example 12.12

1 public void addElementAt(int nuElement, int putHereIndex) {
2 list.insertElementAt(new Integer(nuElement), putHereIndex);
3 }

MyIntVectorList:addElementAt()

Code Example 12.13

1 public String toString() {
2 String returnMe="MyIntVectorList: {";
3
4 for (Iterator it=list.iterator(); it.hasNext();)
5 returnMe += "," + it.next().toString();
6
7 return returnMe + "}";
8 }

MyIntVectorList:toString()

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 306

v) Deleting an element
Vector has an removeElementAt(int) method, so that can be used, as in Code Example
12.4.

vi) Replacing an element
Vector has an replaceElementAt(Object, int) method, so that can be used once the int
is wrapped, as shown in Code Example 12.15.

vii) length
Vector has an size() method, so this method returns that; see Code Example 12.16

viii) Accessing an element
Vector has an elementAt(int) method, so that is returned. But first the Integer must be
unwrapped. The intValue() method will return the int the Integer wraps; but
elementAt() returns an Object, which must first be cast as an Integer (recall "iterator()"

Code Example 12.14

1 public void removeElementAt(int removalIndex) {
2 list.removeElementAt(removalIndex);
3 }

MyIntVectorList:removeElementAt()

Code Example 12.15

1 public void replaceElementAt(int nuValue, int i) {
2 list.setElementAt(new Integer(nuValue), i);
3 }

MyIntVectorList:replaceElementAt()

Code Example 12.16

1 public int length() {
2 return list.size();
3 }

MyIntVectorList:length()

CS231 Spring 5 Page 307

Simply Java Chapter 12: Writing a list class

on page 263); see Code Example 12.17. This is the only method where you must cast the

Object returned from Vector, and then unwrap that Integer to obtain an int. If you used a
Vector to store ints and did not write an adaptor class like this you might end up doing it
all over your code and get very tired of it.

ix) Making the list empty
Vector has an removeAllElements() method, which does the job we need done, as shown
in Code Example 12.18.

E. Testing
If you were writing this code from scratch (which would be a good idea, if you wanted to
internalize it and be ready to use it, or take a test involving it), you would naturally only
write one or two methods at a time, and test them before writing more. This would help
you avoid making the same mistake over and over in every method and having to fix
them all once you realized the problem. You would write the constructor, addElement()
and toString() first (since that is the minimum needed for testing) and then add one or

Code Example 12.17

1 public int elementAt(int i) {
2 return ((Integer) list.elementAt(i)).intValue();
3 }

MyIntVectorList:elementAt()

Code Example 12.18

1 public void makeEmpty() {
2 list.removeAllElements();
3 }

MyIntVectorList:makeEmpty()

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 308

two more at a time. That code might look like Code Example 12.19. Once this code

produces correct output, you know the constructor, addElement() and toString() work,
so it would be time to write and test the other methods. Code Example 12.20 shows such
a test.

Notice that the println() has the correct output as a String constant, so it will be easy to
tell if the output is correct.

Code Example 12.19

1 void initList() {
2 theList.addElement(8);
3 theList.addElement(3);
4 theList.addElement(2);
5 theList.addElement(1);
6 theList.addElement(4);
7 }
8
9 void testList() {
10 theList = new MyIntVectorList();
11 initList();
12 System.out.println("after initializing, it's:" + theList);
13 }

Initial testing code

Code Example 12.20

1 void testList() {
2 theList = new MyIntVectorList();
3 initList();
4 theList.addElementAt(17,0);
5 theList.addElementAt(177,3);
6 theList.replaceElementAt(222,2);
7 theList.removeElementAt(3);
8 theList.removeElementAt(4);
9
10 System.out.println("{17,8,222,177,4}?" + theList);
11 }

Testing three more methods

CS231 Spring 5 Page 309

Simply Java Chapter 12: Writing a list class

F. JavaDoc
Code Example 12.21 shows the addElementAt() method with and without Javadoc

comments. Figure 12.3 is the portion of the beautifully formatted documentation these

Code Example 12.21

1 public void addElementAt(int nuElement, int putHereIndex) {
2 list.insertElementAt(new Integer(nuElement), putHereIndex);
3 }

1 /**
2 * Adds an element at a particular index.
3 * Values from there down are first shifted down one.
4 * Last is incremented (since there is one more thing in the list).
5
6 * @param nuElement the new int value to be inserted
7 * @param putHereIndex where to put the value
8 */
9 public void addElementAt(int nuElement, int putHereIndex) {
10 list.insertElementAt(new Integer(nuElement), putHereIndex);
11 }

Code with and without comments

Figure 12.3

 Javadoc output from Code Example 12.21

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 310

comments produce. If your goal is to produce beautifully formatted, professional quality
documentation, Javadoc is a great tool! Its use is described in NetbeansAppendix Q on
page 343.

G. Conclusion
This chapter has presented two implementations for a list of ints, one based on an array,
the other based on a Vector. These will be used in the next chapter. It also introduced
Javadoc for documenting Java programs. Now that we have a working int list class, we
can move on to sorting lists in Chapter 13.

H. End of chapter material

i) Review questions
 12.1 What is an adapter class?
 12.2 How do you get the int value into and out of an Integer wrapper?
 12.3 Which of the two int list implements do you prefer? Why?
 12.4 Why is it good practice to only write a few methods at a time when implementing a

large class using an unfamiliar data structure?
 12.5 What s wrong with this code?
 Account [] accountList = new Account[1000];
 System.out.println("First Account name is=accountList[0].getName());

 12.6

ii) Programming exercises
 12.7 What would go wrong with the addElementAt() method in Code Example 12.3 if

the loop were rewritten as shown?
 for (int i=0; i<=last; i++)
 list[i+1] = list[i];

 12.8 Fix the extra comma bug in the toString() method in Code Example 12.4. Hint:
the problem is that the comma is always added before the element, but it shouldn’t be
added before the first element. Thus, the action of adding a comma should only be
performed under certain conditions.

 12.9 Fix the extra comma bug in the toString() method in Code Example 12.13. Hint:
the problem is identical with the previous exercise, but it is not as easy to tell what
the condition is. Worst case, you could add a variable to tell you if it is the first time
around the loop, but, a more elegant solution appends the comma after the int only if
there is another int coming (you can check it.hasNext())

CS231 Spring 5 Page 311

Simply Java Chapter 12: Writing a list class

 12.10

Simply Java Chapter 12: Writing a list class

CS231 Spring 5 Page 312

CS231 Spring 5 Page 313

Chapter 13: Sorting lists

A. Introduction
Sometimes lists need to be sorted, for a number different reasons. Mailing lists must be
sorted by zip code to reduce postage costs. Lists of names are sorted before being
displayed to allow a human to find names alphabetically.

Before reading the descriptions of the sorts below, take a minute and think of an
algorithm to sort a list of ints. If nothing comes to mind use the following.

Problem Solving Technique

How would you do it without a computer?

If you can’t think of an algorithm for a problem, start solving it yourself and then
convert the technique you would use into an algorithm.

So, write down five single digit numbers in a list and sort them. What did you do? Odds
are you used one of the first two techniques that follow.

B. Intuition for three sorts
Sorting algorithms must work on lists of any length, so speaking abstractly, the length of
the list is some fixed number, n. For concreteness, assume you have an unsorted list of
five ints, say {8,3,2,1,4}. Sorted, this list would be either {1,2,3,4,8}, or {8,4,3,2,1}; let’s
use the former, smallest element first. For insertion and selection sorts it is sometimes
easier to create a second list, although traditionally these sorts are done in place. If we
create a second list, the original list will be referred to as unsorted and the new list as
sorted. Each element from the original list will be added to the sorted list in order (using
different techniques in the different sorts).

i) Insertion sort
The plan here is to start with an empty list, and repeatedly insert the next element from
the unsorted list at the correct location; thus, always keeping the list in order. Starting
with {8,3,2,1,4}, first we take the first element, 8, and insert it in the empty sorted list.

Simply Java Chapter 13: Sorting lists

CS231 Spring 5 Page 314

Thus, we will have a sorted list of length one, {8}. Then taking the next element from
unsorted, 3, and inserting it in order before the 8, we will have a sorted list of length two,
{3,8}. Finally we will have a sorted list of length n, {1,2,3,4,8}. Before each insertion the
list is in order, and after each insertion it is still in order and one element longer. The list
is always in order; sometimes this fact is referred to as an invariant; invariants figure
prominently in some styles of programming.

During the insertion sort, the state of the lists will be as follows (each pair is
unsorted::sorted):

{8,3,2,1,4}::{}
{3,2,1,4}::{8}
{2,1,4}::{3,8}
{1,4}::{2,3,8}
{4}::{1,2,3,8}
{}::{1,2,3,4,8}

ii) Selection sort
This is the sort most people invent. First, select the smallest element in the unsorted list
and put it the empty sorted list, yielding, {1}. Then select the second smallest and add it
to the end of sorted, yielding {1,2}. Continue until all the elements are in their proper
positions.

During the selection sort, the state of the lists will be as follows (again, each pair is
unsorted::sorted):

{8,3,2,1,4}::{}
{8,3,2,4}::{1}
{8,3,4}::{1,2}
{8,4}::{1,2,3}
{8}::{1,2,3,4}
{}::{1,2,3,4,8}

iii) Bubble sort
This much maligned sort is the simplest to code. It is based on the fact that if every pair
of adjacent elements are in the correct order, then the entire list is in order. Thus a local
property produces a global property. The plan is to scan through the list, comparing each
pair of adjacent elements and exchanging them if they are out of order. After one pass
over the list (from first to last), the largest element is guaranteed to be in the last position.

CS231 Spring 5 Page 315

Simply Java Chapter 13: Sorting lists

After two passes, the second largest element will be in the second to last position as well.
After n-1 passes, the entire list will be in order.

Thus the state of the list during the first pass will be (bold elements are about to be
compared):

{8,3,2,1,4}, {3,8,2,1,4}, {3,2,8,1,4}, {3,2,1,8,4}, {3,2,1,4,8}

Notice that every comparison results in swapping the 8 to the right (since it is the largest
item in the list and started in the first position. The states of the list during next pass will
be the following:

{3,2,1,4,8}, {2,3,1,4,8}, {2,1,3,4,8}, {2,1,3,4,8},{2,1,3,4,8}

On this pass there are only two swaps as the 3 moves right twice. On the third pass there
is even less movement, only the first two elements are swapped:

{2,1,3,4,8}, {1,2,3,4,8}, {1,2,3,4,8}, {1,2,3,4,8},{1,2,3,4,8}

Notice that the list is in order after only 3 passes; in general n-1 passes are required, since
if the smallest element is in the last position, it can only move one position left on each
pass.

No human would ever sort like this (one would hope!), but the machine does the mindless
repetition, well, mindlessly, and this algorithm is very easy to code.

C. Algorithm/Pseudocode
The next step, after understanding the mechanics of an algorithm is to write pseudocode
describing the operation of the algorithm to carry out that technique. Notice that for this
level of description the representation of the list is not specified; it might be an array, a
Vector, or some other list representation. To understand this pseudocode, you should get
a pencil and paper and draw the states of the lists and keep track of the value of the
indices as the loops repeat. Just glancing at the pseudocode is not likely to work; if that’s
what you’re going to do, it might be time to put this down and do something constructive.

i) Insertion sort
create an empty list, called sorted
for each element of unsorted
 find where it goes in sorted*

Simply Java Chapter 13: Sorting lists

CS231 Spring 5 Page 316

 insert it there*

The *s indicate that this step requires additional specification. These subalgorithms are
candidates for methods when the code is written.

:*: find where an element, insertMe, goes in sorted
for each element in sorted (call it current element)
 if insertMe < current element
 return location of current element
return one past the end of the list (since current >= all of them)

:*: insert an element at location i
shift the elements from i down, down by 1
store the element at i

ii) Selection sort
create an empty list, called sorted
iterate n times (with index, i, moving from first to last in unsorted

 find the location of the smallest item remaining in unsorted*
 remove it from unsorted and add it to sorted

Finding the minimum element is a list is something that must be done time and again.
There are various ways to accomplish this. Here, we need to know where the minimum
element is, as opposed to just what it is; otherwise, deleting it from the list will require
finding it again. Thus, this algorithm keeps track of the index of the minimum value.
Note that minIndex is initially set to the first location.

 :*: find the smallest item remaining in unsorted
 set minIndex to 0
 for look=1 to last location of unsorted
 if elementAt(i) < elementAt(minIndex)
 minIndex = i

iii) Bubble sort
iterate n times
 do one pass*

:*: do one pass
for each element in the list (except the last)
 if it is > the next element
 exchange them

CS231 Spring 5 Page 317

Simply Java Chapter 13: Sorting lists

D. Implementation
All of these sorts can be written as nested loops. They can also be written as single loops
that invokes a method or two. The latter is perhaps easier to understand. Which is
preferable depends on the context and is a matter of taste.

i) Bubble sort implement ion
Code Example 13.1 shows a decomposed bubble sort. There is no way anyone who

understands Java could be confused about what the bubbleSort() method does; it iterates
n times (n being length of the list) -- each iteration it does one pass. By contrast Code

Code Example 13.1

1 public void bubbleSort() {
2 // iterate n times
3 for (int pass=0; pass<list.length(); pass++) {
4 onePass();
5 }
6 }
7
8 private void onePass() {
9 // for each element in the list (except the last)
10 for (int look=0; look<list.length()-1; look++) {
11 // if it is > the next element
12 if (list.elementAt(look) > list.elementAt(look+1))
13 swap(look, look+1); // exchange them
14 }
15 }

Bubble Sort decomposed
Lines 3-5: invokes onePass() n times (where n is the length of the list).
Lines 12-14: compares adjacent elements (at look and look+1), n-1 times, and if they are out of

order, swaps them
The pseudocode was entered as comments, and the code written around it.

Simply Java Chapter 13: Sorting lists

CS231 Spring 5 Page 318

Example 13.2 presents a nested loop bubble sort implementation. It does exactly the same

thing, except the body of onePass() is inserted in the loop in bubbleSort(). Which is
better? It depends.

Notice that both alternatives use swap(int, int), illustrated in Code Example 13.3. It

swaps the elements at the two indices passed as parameters. Swap is a familiar computing

Code Example 13.2

1 public void bubbleSort() {
2 for (int pass=0; pass<list.length(); pass++) {
3 for (int look=0; look<list.length()-1; look++) {
4 if (list.elementAt(look) < list.elementAt(look+1))
5 swap(look, look+1);
6 }
7 }
8 }

Bubble Sort as a single nested loop
This code does exactly what Code Example 13.1 did, but as a nested loop.

Code Example 13.3

1 private void swap(int here, int there) {
2 int pocket = list.elementAt(there);
3 list.replaceElement(there, list.elementAt(here));
4 list.replaceElement(here, pocket);
5 }

Swap
Exchange the elements at here and there. Notice that the type of the elements is not specified.

CS231 Spring 5 Page 319

Simply Java Chapter 13: Sorting lists

idiom. The use of a temporary variable is necessary; what would go wrong with the
version in Code Example 13.4?

This code relies on there being a replaceElement() method in whatever class list
instantiates (which the list classes from Chapter 12 do). It also assumes there is a variable
named list in the class it exists in. What class should that variable, and the sort methods
be declared? It depends. For testing purposes they could both be declared in an Applet
written simply to do that testing, as shown in Code Example 13.5.

Code Example 13.4

1 private void swap(int here, int there) {
2 list.replaceElement(there, list.elementAt(here));
3 list.replaceElement(here, list.elementAt(there));
4 }

Broken Swap
What’s wrong with this code?

Code Example 13.5

1 public class SortTest extends java.applet.Applet {
2 MyList list;
3
4 /** Initializes the applet SortTest */
5 public void init() {
6 initComponents();
7 testBubbleSort();
8 }
9
10 private void testBubbleSort() {
11 list = new MyList(true);
12 System.out.println("before bubblesorting, it's:" + list);
13 bubbleSort();
14 System.out.println("after bubblesorting, it's:" + list);
15 }

Applet for testing bubble sort.
Code to test bubbleSort().
Lines 12 & 14: Notice that these assume MyList defines toString().

Simply Java Chapter 13: Sorting lists

CS231 Spring 5 Page 320

ii) Insertion sort implementation
Code Example 13.6 presents a decomposed insertion sort. As you can see, the code has

been added to the pseudocode (which was first commented out). Look back at the
pseudocode to refresh your memory on the plan, before looking closely at the code. In
lines 9 and 11, the value returned from findInsertIndex() is stored in a variable,
putHereIndex, which is then passed as a parameter to addElementAt(). Thus, these lines
could be combined to: sorted.addElementAt(nextNum, findInsIndex(nextNum); It is
just a question of style.

Code Example 13.6

1 public void insertionSort() {
2 //create an empty list, called sorted
3 sorted = new MyList();
4
5 //for each element of unsorted
6 for (int nextI=0; nextI<list.length(); nextI++) {
7 int nextNum = list.elementAt(nextI);
8 //find where it goes in sorted*
9 int putHereIndex = findInsertIndex(nextNum);
10 // insert it there
11 sorted.addElementAt(nextNum, putHereIndex);
12 }
13
14 list = sorted;
15 }
16
17 public int findInsertIndex(int insertMe) {
18 //for each element in sorted
19 for (int here=0; here<sorted.length(); here++) {
20 //if insertMe < current element
21 if (insertMe < sorted.elementAt(here))
22 //return location of current element
23 return here;
24 }
25 //return one past the end of the list (current >= all of them)
26 return sorted.length();
27 }

Insertion sort decomposed
This sort is rather more complex to code than bubble sort.

CS231 Spring 5 Page 321

Simply Java Chapter 13: Sorting lists

Notice also that the control idiom from Code Example 11.19 is used in
findInsertIndex(), which returns as soon as it finds an element in the list that is bigger
than the value to be inserted.

The code for selection sort is left to the reader. Realize that if you type "selection sort
java" into a search engine, it will find numerous implementations.

E. End of chapter material

i) Review questions
 13.1 Write a method, called min() that returns the minimum of its two int parameters.
 13.2 Write a method, called min() that returns the minimum of its 4 int parameters.
 13.3 Write a method, called min() that returns the minimum of its 8 int parameters.
 13.4 Write a method that is passed a list of ints (your choice which kind) and returns the

maximum value of those ints.

ii) Programming exercises
 13.5 Implement and test selection sort.
 13.6 Add a sort button in your BankDBMS. Sort alphabetically by name. Be sure to

rearrange the names in the Choice to be alphabetical as well.

Simply Java Chapter 13: Sorting lists

CS231 Spring 5 Page 322

CS231 Spring 5 Page 327

Simply Java NetBeans Appendix 3.6

Appendix 1 : Netbeans 3.6 Appendix

Netbeans 3.6 Appendix A: Getting started with Netbeans and the
greetings program

a) download and install NetBeans
If NetBeans is not installed on the machine you are using (lab machines will all have it
installed already), download and install NetBeans and the current JDK from the web
(netbeans.org)

b) Start up NetBeans

Open the NetBeans Launcher to start the IDE (integrated development environment). On
a PC, double-click the icon, on a Mac, single-click

c) Create a new project and mount a directory to use for it

1. Create a new project (Project/Project manager/new) with any name you want (no
spaces or special characters; just letters and numbers). Netbeans will open a new
project and display a blank screen with FileSystems in the upper left.

2. Create a directory for this project. All the files for this project will be stored there. It
does not matter what you name it, or where it is exactly, but it will be simpler in the
long run if you keep your files in a directory called programming, or some such. You
can use the Explorer in a PC environment, or the Finder in a Mac environment to
create a new directory (also called a folder).

3. Select File/Mount Filesystem... (this means click the File menu in the extreme upper
left, then click Mount Filesystem in the list that opens).

4. Select Local Directory and click Next
5. Select the directory you created in step 2. Double-click folder icons to open them (to

navigate to where you created that directory). Select that directory; then click Finish.
The directory you’ve chosen should appear below Filesystems in the left pane.

6. Add that directory to the project. Select it (by clicking its icon) - it will then be
highlighted. Then Tools/Add to Project (i.e. click the Tools menu item at the top of
the screen, and then click Add to Project on the drop down menu).

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 328

d) Create a main program

1. Select File/new (note: the directory must be highlighted in the FileSystems window,
otherwise there is a bug in the PC implementation that doesn’t let you create a new
file), open Java classes (by clicking the triangle icon on its left), then select Java
Main class, click Next, and type Test as the name (it will be highlighted, so just
type), finally press Finish.

2. You should, in a moment, see a file that looks like:

3. Replace //TODO code application logic here with
System.out.println("greetings"); in the main method (line 21).

4. Execute the program, (Project/Execute); if you made no typing mistakes you should
see a window asking which is the Main Program; click the triangle to open the

Appendix Code Example 1

1/*
2 * Test.java
3 *
4 * Created on April 11, 2004, 5:17 PM
5 */
6
7/**
8 *
9 * @author levenick
10 */
11public class Test {
12
13 /** Creates a new instance of Test */
14 public Test() {
15 }
16
17 /**
18 * @param args the command line arguments
19 */
20 public static void main(String[] args) {
21 //TODO code application logic here
22 }
23}
24

 Simplest Application created with Netbeans
What Netbeans writes for you when you create a Java Main class Application

CS231 Spring 5 Page 329

Simply Java NetBeans Appendix 3.6

directory, then select the only one, Test, dismiss that panel, and then greetings should
appear in the output window (the output window is the window that says output in
the title bar; the title bar is the bar at the top of a window).

Netbeans 3.6 Appendix B: Creating the simplest Applet in Net-
beans

a) Start up NetBeans, (Step b) in NetbeansAppendix A on page 327)

b) Create a new project and mount a directory to use for it

This is Step c) in NetbeansAppendix A on page 327 -- be sure to do all six parts of that
step!

c) Create a main program

1. Select File/new, open Java Classes (by clicking the triangle icon on its left), then
select Applet, click Next, and type FirstApplet as the name (it will be highlighted, so
just type), finally press Finish.

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 330

2. You should, in a moment, find yourself looking at a file that looks like:

3. Replace line 17 with System.out.println("I wrote an Applet!"); .
4. Execute the program, (Project/Execute); if you made no typing mistakes you should

see a window asking which is the Main Program; click the triangle to open the
directory, then select the only one, FirstApplet, close that panel, and then "I wrote an
Applet!" should appear in the output window (the output window is the window that
says output in the title bar; the title bar is the bar at the top of a window).

Appendix Code Example 2

1/*
2 * FirstApplet.java
3 *
4 * Created on June 25, 2004, 1:11 PM
5 */
6
7/**
8 *
9 * @author levenick
10 */
11public class FirstApplet extends java.applet.Applet {
12
13 /** Initialization method that will be called after the applet is

loaded
14 * into the browser.
15 */
16 public void init() {
17 // TODO start asynchronous download of heavy resources
18 }
19
20 // TODO overwrite start(), stop() and destroy() methods
21}
22

 Simplest Applet created with Netbeans
What Netbeans writes for you when you create a non-GUI Applet

CS231 Spring 5 Page 331

Simply Java NetBeans Appendix 3.6

Netbeans 3.6 Appendix C: Creating a GUI Applet

a) Create a new project and mount a directory to use for it
See NetbeansAppendix A on page 327

b) Create a GUI Applet

1. Select File/new, open Java GUI Forms (by clicking the triangle icon on its left), then
open AWT Forms (the same way), then select Applet Form, click Next.

2. Give it any name you want (so long as it is a legal identifier and starts with a capital
letter!), for simplicity, use ATM_Applet.

Two windows should open, a Form Editor, and a Source Editor. You will be working
with the Form Editor first, and the Source Editor second.

c) Set the Layout to Null

1. In the Form Editor, Open the [Applet] on the Inspector pane (on the right, second
pane from the top) by clicking the triangle.

2. right-click BorderLayout, select SetLayout, then select Null Layout.

Continue with the next Appendix to add a Button.

Netbeans 3.6 Appendix D: Adding, connecting and testing a Button
Continuing from the previous Appendix, or, anytime you have the Form Editor open
(click the ATM_Applet [form] button in the top bar to open it) and the Layout set to Null
Layout already (you can check by opening the [Applet] in the Inspector ("right-click
BorderLayout, select SetLayout, then select Null Layout." on page 331).

a) Add an AWT Button
1. Select (click) the AWT tab in the Palette pane (on the right, at the top). Click on the

Button icon (top row, second from left, with the OK on it, just right of the big A)
2. Click in the Applet pane (the colored rectangle). A Button should appear where you

clicked, with the label button1.

b) Connect it to your program

Double-click the button. You will be taken to the Source Editor, with the cursor
positioned in the private void button1ActionPerformed(...) method, i.e. line 25 in

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 332

Code Example 3 (which was copied from Netbeans and edited to fit on the page.) Notice

that that line reads
 // TODO add your handling code here:
Anything on a line after a // is a comment and is only visible to the programmer, the
compiler ignores it.

Appendix Code Example 3

1public class ATM_Applet extends java.applet.Applet {
2
3 /** Initializes the applet ATM_Applet */
4 public void init() {
5 initComponents();
6 }
7
8 private void initComponents() {
9 button1 = new java.awt.Button();
10
11 setLayout(null);
12
13 button1.setLabel("button1");
14 button1.addActionListener(new java.awt.event.ActionListener() {
15 public void actionPerformed(java.awt.event.ActionEvent evt) {
16 button1ActionPerformed(evt);
17 }
18 });
19
20 add(button1);
21 button1.setBounds(100, 90, 66, 24);
22 }
23
24 private void button1ActionPerformed(java.awt.event.ActionEvent evt) {
25 // TODO add your handling code here:
26 }
27
28 // Variables declaration - do not modify
29 private java.awt.Button button1;
30 // End of variables declaration
31
32}

 Applet GUI with a single Button -- first pass
What Netbeans writes for you when you add a button and double-click it in the Form Editor

CS231 Spring 5 Page 333

Simply Java NetBeans Appendix 3.6

Because you double-clicked the Button in the Form Editor, Netbeans wrote code that will
be executed when you push the Button (when the Applet is running). In particular, the
private void button1ActionPerformed(...) method will be executed each time the
button is pushed. To test that that actually happens, replace // TODO add your
handling code here:
with System.out.println("button was pushed"); or some similar message.

c) Test it

As usual, to compile and execute your program, Project/Execute. If it is the first time,
you will be asked to specify the main program (Code Example 4 on page 328). Push the
Button and it should display the text from the println in the output window. Push the
Button several times. Assuming you see the message repeated each time you push the
Button, it’s working!

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 334

Netbeans 3.6 Appendix E: Creating a GUI Application
This is almost identical with creating a GUI Applet. The only difference is that you must
choose Frame Form instead of Applet Form, and you must add a setBounds() messages
in init(). Once that’s done, you can use the Form Editor to add components.

a) Create a new project and mount a directory to use for it
See NetbeansAppendix A on page 327

b) Create a GUI Application

1. Select File/new, open Java GUI Forms (by clicking the triangle icon on its left), then
open AWT Forms (the same way), then select Frame Form, click Next.

2. Give it any name you want (so long as it is a legal identifier and starts with a capital
letter!), for simplicity, use ATM_Applet.

Two windows should open, a Form Editor, and a Source Editor. You will be working
with the Form Editor first and the Source Editor second.

c) Set the Layout to Null

1. In the Form Editor, Open the [Applet] on the Inspector pane (on the right, second
pane from the top) by clicking the triangle.

2. right-click BorderLayout, select SetLayout, then select Null Layout.

CS231 Spring 5 Page 335

Simply Java NetBeans Appendix 3.6

d) Making the Frame appear

Unless you add a setBounds() method in the constructor, you will never see the Frame! It
has size zero by default and Java does not display things of size zero. Code Example 4
shows how to fix this; the four parameters are the usual for a rectangle, (x, y, width, ht).

Appendix Code Example 4

1 public class EditFrame extends java.awt.Frame {
2
3 /** Creates new form EditFrame */
4 public EditFrame(Account theAccount) {
5 initComponents();
6 setBounds(100,100,300,300);
7 }
8

 Making the Frame not be size zero
Line 6: NetBeans does not write this line for you and if you forget it, you will never see your

Frame.

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 336

Netbeans 3.6 Appendix F: Adding a pop-up Frame
Sometimes you want a frame to display something, or interact with the user, but you only
want it to appear when necessary. This can be done using a Frame Form, just like in
"Creating a GUI Application" on page 334, with the following changes.
1. Delete the main() method (this is not an Application and no one will ever send it a

main() message.
2. Add show() to the constructor (or you’ll never see it).
3. Change System.exit(1); to setVisible(false); in exitForm() see Code Example 5

Appendix Code Example 5

1 public class EditFrame extends java.awt.Frame {
2
3 /** Creates new form EditFrame */
4 public EditFrame(Account theAccount) {
5 initComponents();
6 setBounds(100,100,300,300);
7 show();
8 }
9
10 ...
11
12 /** Exit the Application */
13 private void exitForm(java.awt.event.WindowEvent evt) {
14 setVisible(false);
15 }
16

 Showing the Frame, and avoiding ending the program when it closes.
Line 7: Until you send show() to a Component, it is invisible. Again, if you forget this, you

will never see your Frame.
Line 14: exitForm() is sent when the user closes the Frame; Netbeans writes it to send

System.exit(), which exits the program. This way the frame is simply rendered
invisible.

CS231 Spring 5 Page 337

Simply Java NetBeans Appendix 3.6

Netbeans 3.6 Appendix G: Adding, connecting and testing a Text-
Field
This is just like adding the Button (see previous Appendix). Open the Form editor (you
can do this by double-clicking the icon to the left of the Applet in the FileSystems pane).
Make sure the AWT tab is selected in the Palette pane. Click the TextField icon (just to
the right of the Button icon), then click in the Applet rectangle (as the upper left corner of
where you want it to appear (you can move it by clicking and dragging it). A TextField
should appear. Double-click it. You will be switched to the Source Editor, ready to add
code that will be executed when the user hits enter in the Textfield.

Replace the comment at line 2 with the code:
System.out.println("TextField contains: " + textField1.getText());
Execute the Applet; try typing in the TextField and then hitting enter.

Netbeans 3.6 Appendix H: Adding a TextArea
Adding a TextArea is exactly like adding any other Component. Click the TextArea icon
in the AWT pane of Palette window in the Form Editor view of the Applet. Then click
where you want it, resize it and rename it. If you always call your TextAreas the same
thing, like theTA, you won’t have to remember what they are called later when you want
to access them.

Appendix Code Example 6

1 private void textField1ActionPerformed(java.awt.event.ActionEvent evt) {
2 // TODO add your handling code here:
3 }
4
5 private void button1ActionPerformed(java.awt.event.ActionEvent evt) {
6 System.out.println("they pushed the button!!");
7}

 Applet fragment with a Button and a TextField
What Netbeans writes for you after you add a TextField and double-click it in the Form Editor

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 338

Netbeans 3.6 Appendix I: Adding and using a Choice
Like other AWT Components, choose the AWT pane of Palette window in the Form
Editor view, click on the Choice, then in the Form Editor (yes, choose Null Layout to get
control of the size). Now:
1. Change its name (maybe to theChoice).
2. Select Events in the Properties pane (theChoice must be selected for this to work)
3. Select ItemStateChanged and click the ellipses box - a Handlers pane will open, click

"Add..." in it.
4. Type a name for the method that will be invoked when the user selects a new item in

the Choice; newItemSelected() is my first thought. Hit enter, then "okay". Netbeans
will write the code and flip you to it.

5. Put some items in the Choice’s list of choices, right after initComponents() in the
constructor. Like this:

 public BankDBMS() {
 initComponents();
 theChoice.addItem("this");
 theChoice.addItem("that");
 theChoice.addItem("the other thing");

6. To test the Choice write the following code in newItemSelected() --
 String item = theChoice.getSelectedItem();
 System.out.println("new choice from the choice: " + item);

7. Execute the program to make sure it’s working. Then the item variable can be used as
a parameter to whatever method you want newItemSelected() to invoke.

Netbeans 3.6 Appendix J: Changing the label on a Button
The default label on Buttons is button1, button2, etc. To change the label of a Button:
1. Click on it.
2. In the Properties pane (on the right, under the Inspector), select (double-click)

button1 next to Label (sixth line down).
3. Type the new label myFirstButton, or whatever (hit enter -- if you do not hit enter,

nothing will happen!).
4. Resize the button so you can read the whole label (click and drag its border).

CS231 Spring 5 Page 339

Simply Java NetBeans Appendix 3.6

Netbeans 3.6 Appendix K: Renaming Components
When you create Components, Netbeans gives them names like button1, button2, and etc.
To change the name of a Button
1. click on it
2. In the Inspector pane (on the right) its name should be highlighted, click on that,

once, and wait a beat for it to select the current name
3. When button1 (or whatever) is selected; type the name you wish to give it instead.

Hint: use the class of the component in its name, like testButton. Again, HIT ENTER,
or you have not renamed it.

Netbeans 3.6 Appendix L: Creating a class
1. First, have the project you are working on open.
2. Create a new file (File/Add New)
3. Open Java Classes (click the triangle on its left), select Java class, click Next
4. Type the name of the class and hit Enter

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 340

Netbeans 3.6 Appendix M: Creating a class with a test driver
1. First, have the project you are working on open.
2. Create a new file File/Add New
3. Open Java Classes (click the triangle on its left), select Main, click Next
4. Type the name of the new class, Account or whatever, click Finish. It should create

the class and display it, like this:.

Appendix Code Example 7

1/*
2 * Account.java
3 *
4 * Created on June 25, 2004, 2:13 PM
5 */
6
7/**
8 *
9 * @author levenick
10 */
11public class Account {
12
13 /** Creates a new instance of Account */
14 public Account() {
15 }
16
17 /**
18 * @param args the command line arguments
19 */
20 public static void main(String[] args) {
21 // TODO code application logic here
22 }
23
24}

 An Account class shell with a main method

CS231 Spring 5 Page 341

Simply Java NetBeans Appendix 3.6

Netbeans 3.6 Appendix N: Changing the size of an Applet
1. Assuming your Applet class is called TestApplet; Open the TestApplet.html file (in

the FileSystems window it is right under the other TestApplet with a different icon).
2. Change the 300 in Code Example 8 line 10 to change the height of the Applet (don’t

forget to save it - File/Save, or ^s).

Netbeans 3.6 Appendix O: Using the Color Editor
In the Form Editor, select a button, then in Properties click the ... to the right of
background, click RGB and slide the sliders

Appendix Code Example 8

1 <HTML>
2 <HEAD>
3 <TITLE>Applet HTML Page</TITLE>
4 </HEAD>
5 <BODY>
6
7 <H3><HR WIDTH="100%">Applet HTML Page<HR WIDTH="100%"></H3>
8
9 <P>
10 <APPLET code="TestApplet.class" width=350 height=300></APPLET>
11 </P>
12
13 <HR WIDTH="100%"><I>Generated by NetBeans IDE</I>
14 </BODY>
15 </HTML>

 TestApplet.html
This is the HTML code NetBeans generates automatically when you make an Applet called

TestApplet.
Line 10: This is the line you could put in any HTML file to start TestApplet (assuming

TestApplet.class was in the same directory as the HTML file). To change the size of
the Applet change the values of width and/or height.

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 342

Netbeans 3.6 Appendix P: Catching mouse clicks
You can catch mouse click in a Frame as follows. Assuming you have a GUI Frame
Form (an Applet works the same way), in the Form Editor:
1. Select the Frame
2. Select Events in the Properties pane
3. Select mousePressed and click the ellipses box - a Handlers pane will open, click

"Add..." in it.
4. Type a name for the method that will be invoked when the user presses the mouse in

the Frame; mousePressed() is descriptive. Hit enter, then "okay". Netbeans will write
the code and flip you to it.

5. Write diagnostic code like Code Example 9 so that you can be sure that it is catching

the mouse presses correctly.

Once you are sure you are getting the correct coordinates when the mouse goes down,
you can pass x, and y to some other method to do whatever you wanted to do with that
information.

Note that this code will execute when the mouse goes down. You can also handle the
event when it goes up (mouseReleased), or when it goes down and up without moving
(mouseClicked), or when it is moved while down (mouseDragged).

Appendix Code Example 9

1 private void mousePressed(java.awt.event.MouseEvent evt) {
2 int x = evt.getX();
3 int y = evt.getY();
4 System.out.println("Pressed! x=" + x + " y=" + y);
5 }

 TestApplet.html
This is the HTML code NetBeans generates automatically when you make an Applet called

TestApplet.
Line 10: This is the line you could put in any HTML file to start TestApplet (assuming

TestApplet.class was in the same directory as the HTML file). To change the size of
the Applet change the values of width and/or height.

CS231 Spring 5 Page 343

Simply Java NetBeans Appendix 3.6

Netbeans 3.6 Appendix Q: Adding JavaDoc comments.
 You can add comments to a class from NetBeans by Tools/Auto Comment. This will
guide you through commenting your code. Then, after you have added the comments you
want to all your classes, use Tools/Generate Javadoc to create all the files. Try it out. It’s
fun! It’s easy! It looks really impressive!

When you have a file open and select Tools/Auto Comment, NetBeans opens an Auto
Comment Tool window. All the methods in the current class are listed on the left, each
with an icon indicating it’s status relative to JavaDoc comments. If there is no comment,
a red X is displaced, if there are missing tags for elements the tool can detect, a lightning
bold is displayed. This is the "autocommenting" the tool does; you, the human, must fill
in the comments to make all the methods display the green check icon.

Each method needs a comment which tells what it does. This is entered in the "Java
Comment Text" box at the top. Additionally, methods which have non-void return types
must have an @return tag which describes the return value, and methods with parameters
require @param tags which describe each parameter.

Notice the four buttons to the right of the list of methods. Autocorrect will insert the tags
it can tell you need; click on each one to add its description. Best of all, push the Help
button for a much more thorough description than is provided here.

Simply Java NetBeans Appendix 3.6

CS231 Spring 5 Page 344

access modifiers - the keywords public, private, and protected con-
trol which methods and variable can be accessed from where. If a
method has no access modifier, it is "friendly" -- i.e. public to you,
private to anyone else. That s okay to do for now. 28

actual parameters - parameters in the parentheses of a message (may
be any expression of the appropriate type) 104

Applet - a Java program that runs in the context of a web browser.
Also a class in java.applet. 20

Application - A java program that runs independently. 21

assignment operator - a single equals sign 95

BNF - Backus Naur Form. A metalanguage for describing context
free grammars. Commonly used to describe the syntax of a pro-
gramming language. 92

bug - An error in a program. 19

byte code - The intermediate form that the Java compiler puts into
the .class file to be interpreted by the Java Virtual Machine when the
program executes. 25

compile-time - during compilation, compare with execute-time 126

Component - a generic class in java.awt that includes Button, Text-
Field and other common GUI components. 33

concatenation - to attach together end to end. If you concatenate
"psycho", "the", and "rapist", you get "psychotherapist". 29

control variable - a variable that controls the execution of an iterative
loop 192

default value - the value you get if you don t do anything. Instance
variables are assigned zero by default when they are created. If you
want to initialize them to something else you may (e.g. int x=17;). 60

echo a file - to read a file and display it on the screen 247

file I/O - file input and output 239

formal parameters - parameters defined in a method heading (each
must have a type and a name) 104

GUI - graphical user interface 39

hand simulation - simulating code by hand; performing the seman-
tics of each statement, one by one to discover how code works, or
when it is broken, why it doesn t 192

HTML - hypertext mark-up language: an embedded command for-
matting language commonly used for web pages. 67

identifiers - Java names. Must start with a letter and be composed
of only letters, digits and underscores; case matters. 24

idiom - a sequence of symbols whose meaning cannot be derived
from the individual symbols, but which must be learned as a whole,
by rote 23

infinite loop - a loop that executes forever 192

instance variable - a variable declared outside of any method, a copy

is created for each instance 100

invariant - a condition that does not change; something which is
known to always be true in some part of an algorithm 314

iteration - another word for repetition. See the next chapter for iter-
ative constructs. 225

Java Virtual Machine - Software that creates the Java runtime envi-
ronment on a particular machine. 21

main method - where execution begins when your Application runs
21

Math.random() - returns a random double in the range [0,1) 123

Package - A package is a collection of related classes and interfaces.
You can import packages that other people have written into your
program 21

parameter - information sent along with a message which invokes a
method 28

parameter linkage - when a message is sent with parameter, the val-
ues of the actual parameters are copied to the corresponding formal
parameters 106

pixels - picture elements, the smallest drawable part of the output 67

precedence - in an expression with multiple operators, which opera-
tor precedes which (* precedes +) 121

problem solving -- The behavior one engages in when one is stuck

and doesn t know what to do next. 18

prototype - a simplified, preliminary version of something, in this
case, a program. 26

public - An access type; means anyone can see this. 25

recursive definition -- a definition that uses the thing being defined
41

scope - the portion of a program where a construct is visible (or de-
fined) 126

Semantics - meaning, or action. 92

shadow - to hide a variable, by being named the same thing in a more
local scope; most often happens with parameters 116

signature - the type, name of a method along with the number of pa-
rameter and their types 66

Socket - A mechanism to connect one computer to another (virtual-
ly). Also a class in java.network. 21

spawned - technical term for created; used only for Threads. When
a new thread of control is initiated, i.e. begins execution, it is said to
be spawned. 218

static - modifier that creates class variables or methods instead of in-
stance variables or methods 127

String - the Java class whose instances are each a literal series of
characters. 29

Syntax - grammar, or form. 92

syntax - Grammar. Every programming construct has both syntax
(grammar) and semantics (meaning). 21

thread of control - the sequence of statements executed when a pro-
gram executes. A temporal map of where control resides during ex-
ecution. 216

toggle - a two state switch which changes state each time you acti-
vate it 234

variable - memory to store one value of a particular type 43

