Lightning Java Review

(or, perhaps, Introduction)



Overview

@ Some facts

@ Methods

@ Variables

@ Inheritance

@ Creating objects (instances)

@ Exceptions



Some facts

@ Almost all processing is java is accomplished
by sending messages to objects

® Objects are instances of classes

® Class definitions include variables and
methods, both are referred to as members

@ There are two type of methods; ordinary
methods and constructors

® Members may belong to either classes (by
use of static) or instances



Methods

@ In the body of an instance method, there is a hidden
parameter called “this”, it is a reference to the object
which was sent the message that invoked the method

@ The syntax of a method definition is:
<returntype> <name> ([<parameters>]) <body>,
unless the method is a constructor; then its name is
the same as the class it is in and it has no type
before that name.

@ If a method returns nothing, its type is void,
otherwise it must end with return <expression>;,
where <expression> has a type compatible with the
return type.



Variables

® there are 4 common kinds of variables

— Instance

— class

— method

— parameter (!)

— what are two other Kinds?

@ Danger! The most local variable with a particular
name is used; i.e. you can shadow a variable by
accidently giving another variable (including
parameters) the same name.



Inheritance

@ One of the two ways to reuse software

@ Which method gets invoked?

) example of class and superclass where a message sent to aClassObject is fielded by the superclass, which includes a line like this.doit() and both
the class and the superclass have doit() methods defined

@ Chains of super() sometimes do most of the work of
the object


http://willamette.edu/~levenick/cs241/lectures/keynote/softwareReuse.html
http://willamette.edu/~levenick/cs241/lectures/keynote/softwareReuse.html

Creating objects

@ Every object must be created by sending new to
the appropriate class

@ new Foo(), is really Foo.Foo(), i.e. the Foo() message
is sent to the Foo class (classes are in fact objects).

@ Special syntax for invoking other constructors from
a constructor

— must come first
— use super(), for the superclass or this(), for the
default constructor for this class



Exceptions

@ null pointer exceptions
~ Almost always means you are sending a message
to a null pointer
— forgetting to initialize an object is the easiest
(and most common way to do this)

@ another debugging tool
— you can catch and handle Exceptions

— when all else fails, you can use a try-catch block
to find a bug



